Topologia e invariantes de aplicações entre variedades singulares
Métricas invariantes especiais em grupos de Lie e seus quocientes compactos
Resumo
O projeto consiste em desenvolver pesquisa em cinco subáreas de Topologia/Geometria, que tem grupos bem consolidados no Estado de São Paulo. Estes grupos são: (a) Ponto Fixo e Coincidência; (b) Bordismo $(Z_2)^k$-equivariante e Cohomologia de Grupos; (c) Topologia das Variedades; (d) Bordismo e Teoria de Homotopia; (e) Grupos de Trança. Os problemas a serem estudados em cada uma das subáreas representam questões relevantes para o desenvolvimento das subáreas. Podemos exemplificar alguns dos problemas: estudo da teoria de coincidência para espaços de dimensões diferentes, estudo de grupo de tranças de superfícies, bordismo $(Z_2)^k$ equivariante, pontos fixos de involuções, propriedades de variedades generalizadas, teoremas do tipo Borsuk-Ulam, invariantes de torção, problemas de classificação em topologia geométrica e cobordismo. O projeto consiste em visitas tanto por parte de pesquisadores estrangeiros bem como, principalmente, de visitas dos membros brasileiros ao exterior em instituições ou a pesquisadores de bom nível, congressos, seminários etc. propiciando condições para um melhor desempenho e resultado para o desenvolvimento dos projetos. A interação e a proximidade das subáreas faz com que as pessoas engajadas em um específico projeto participem do desenvolvimento não somente daquele grupo, mas também dos outros podendo de forma indireta tornar frutífera sua colaboração. Finalmente dependendo dos recursos destinados planejamos fornecer algum material de computação complementar para algumas pessoas do projeto as quais tenham necessidade além do equipamento que esteja disponível em sua unidade. (AU)
Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio: |
Mais itensMenos itens |
TITULO |
Matéria(s) publicada(s) em Outras Mídias ( ): |
Mais itensMenos itens |
VEICULO: TITULO (DATA) |
VEICULO: TITULO (DATA) |