Busca avançada
Ano de início
Entree

Colágeno e annexina são responsáveis pelo controle do processo de biomineralização?

Processo: 14/11941-3
Linha de fomento:Auxílio à Pesquisa - Regular
Vigência: 01 de setembro de 2014 - 31 de outubro de 2016
Área do conhecimento:Ciências Biológicas - Bioquímica - Enzimologia
Pesquisador responsável:Pietro Ciancaglini
Beneficiário:Pietro Ciancaglini
Instituição-sede: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP). Universidade de São Paulo (USP). Ribeirão Preto , SP, Brasil
Assunto(s):Biomineralização  Cinética enzimática  Anexina A5  Fosfatase alcalina  Colágeno  Osteoblastos  Nucleosídeo-trifosfatase  Proteolipossomos 

Resumo

O processo de biomineralização é um evento altamente complexo e consiste no acúmulo de mineral constituído principalmente por íons de fosfato e cálcio que formam um sal de fosfato de cálcio, cuja estrutura se transforma em hidroxiapatita. Este processo é mediado por osteoblastos, células que são responsáveis pelo início do processo de biomineralização, mediado pela liberação de vesículas da matriz (MVs). Estas vesículas surgem por brotamento das superfícies das células e são secretadas no local específico do início da biomineralização na matriz do tecido ósseo. MVs contém altas concentrações de íons Ca2+ e fosfato inorgânico (Pi), proporcionando um microambiente adequado para a formação inicial e propagação dos cristais de hidroxiapatita. Para que isso ocorra corretamente são necessárias varias proteína/enzimas, bem como microambientes com condições bastante particulares. Uma atenção especial deve ser dada a algumas proteínas presentes nas MVs: Anexina V (AnxA5), fosfatase alcalina (TNAP) e nucleosídeo trifosfato difosfohidrolase 1 (NPP1). Tais proteínas regulam a formação de cristais de fosfato de cálcio, atuando assim diretamente no processo de mineralização óssea. Dentre as anexinas, especificamente a Anexina V, uma proteína de ~35 kDa, é responsável pela formação de canais de cálcio através da associação desta proteína tanto com a face externa quanto interna da membrana das MVs. As anexinas também são responsáveis pela desorganização da membrana celular, que por sua vez resulta no processo de apoptose. A TNAP é uma fosfomonohidrolase inespecífica, capaz de hidrolisar monoésteres de fosfato, pirofosfato, diésteres de fosfato, bem como catalisar reações de transfosforilação. Está inserida à membrana plasmática das MVs por uma âncora de glicosilfosfatidilinositol (GPI) e é denominada "alcalina" por sua habilidade de efetuar estas reações de hidrólises de substratos mais eficientemente em pH acima do neutro (pH 8-11). Além disso, a TNAP tem um papel crucial em limitar a concentração de pirofosfato inorgânico extracelular (ePPi), um potente inibidor da mineralização, para manter uma razão Pi/PPi adequada para a mineralização óssea normal. A função primária da TNAP é degradar o ePPi, que é produzido ectoplasmicamente pela NPP1.No presente projeto pretendemos estudar o envolvimento de proteínas (AnxA5, TNAP e NPP1), lipídios e colágeno (tipo II e X) no processo de biomineralização, empregando-se sistemas vesiculares de proteolipossomos, com o objetivo de formarmos sistemas miméticos de MVs e estudarmos como estas interações proteína/proteína e proteína/colágeno regulam e modulam o processo de mineralização mediado por MVs. Assim, estamos solicitando varias itens de consumo para sua execução, bem como manutenção do laboratório. (AU)

Publicações científicas (12)
(Referências obtidas automaticamente do Web of Science e do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores)
SPER SIMAO, ANA MARIA; BOLEAN, MAYTE; FAVARIN, BRUNO ZOCCARATTO; VESCHI, EKEVELINY AMABILE; TOVANI, CAMILA BUSSOLA; RAMOS, ANA PAULA; BOTTINI, MASSIMO; BUCHET, RENE; MILLAN, JOSE LUIS; CIANCAGLINI, PIETRO. Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators. JOURNAL OF BONE AND MINERAL METABOLISM, v. 37, n. 4, p. 607-613, JUL 2019. Citações Web of Science: 2.
PLAUT, JUSTIN S.; STRZELECKA-KILISZEK, AGNIESZKA; BOZYCKI, LUKASZ; PIKULA, SLAWOMIR; BUCHET, RENE; MEBAREK, SAIDA; CHADLI, MERIEM; BOLEAN, MAYTE; SIMAO, ANA M. S.; CIANCAGLINI, PIETRO; MAGRINI, ANDREA; ROSATO, NICOLA; MAGNE, DAVID; GIRARD-EGROT, AGNES; FARQUHARSON, COLIN; ESENER, SADIK C.; MILIAN, JOSE L.; BOTTINI, MASSIMO. Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization. Archives of Biochemistry and Biophysics, v. 667, p. 14-21, MAY 30 2019. Citações Web of Science: 0.
SEBINELLI, H. G.; BORIN, I. A.; CIANCAGLINI, P.; BOLEAN, M. Topographical and mechanical properties of liposome surfaces harboring Na, K-ATPase by means of atomic force microscopy. SOFT MATTER, v. 15, n. 13, p. 2737-2745, APR 7 2019. Citações Web of Science: 1.
ANDRADE, MARCO A. R.; DERRADI, RAFAEL; SIMAO, ANA M. S.; MILLAN, JOSE LUIS; RAMOS, ANA P.; CIANCAGLINI, PIETRO; BOLEAN, MAYTE. Is alkaline phosphatase biomimeticaly immobilized on titanium able to propagate the biomineralization process?. Archives of Biochemistry and Biophysics, v. 663, p. 192-198, MAR 15 2019. Citações Web of Science: 1.
DE FARIA, AMANDA N.; CRUZ, MARCOS A. E.; RUIZ, GILIA C. M.; ZANCANELA, DANIELA C.; CIANCAGLINI, PIETRO; RAMOS, ANA P. Different compact hybrid Langmuir-Blodgett-film coatings modify biomineralization and the ability of osteoblasts to grow. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, v. 106, n. 7, p. 2524-2534, OCT 2018. Citações Web of Science: 5.
BOTTINI, MASSIMO; MEBAREK, SAIDA; ANDERSON, KAREN L.; STRZELECKA-KILISZEK, AGNIESZKA; BOZYCKI, LUKASZ; SPER SIMAO, ANA MARIA; BOLEAN, MAYTE; CIANCAGLINI, PIETRO; PIKULA, JOANNA BANDOROWICZ; PIKULA, SLAWOMIR; MAGNE, DAVID; VOLKMANN, NIELS; HANEIN, DORIT; MILLAN, JOSE LUIS; BUCHET, RENE. Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, v. 1862, n. 3, p. 532-546, MAR 2018. Citações Web of Science: 17.
BOLEAN, MAYTE; BONIN, IVANA A.; SIMAO, ANA M. S.; BOTTINI, MASSIMO; BAGATOLLI, LUIS A.; HOYLAERTS, MARC F.; MILLAN, JOSE L.; CIANCAGLINI, PIETRO. Topographic analysis by atomic force microscopy of proteoliposomes matrix vesicle mimetics harboring TNAP and AnxA5. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, v. 1859, n. 10, p. 1911-1920, OCT 2017. Citações Web of Science: 7.
RUIZ, GILIA C. M.; CRUZ, MARCOS A. E.; FARIA, AMANDA N.; ZANCANELA, DANIELA C.; CIANCAGLINI, PIETRO; RAMOS, ANA P. Biomimetic collagen/phospholipid coatings improve formation of hydroxyapatite nanoparticles on titanium. Materials Science & Engineering C-Materials for Biological Applications, v. 77, p. 102-110, AUG 1 2017. Citações Web of Science: 10.
FAVARIN, B. Z.; ANDRADE, M. A. R.; BOLEAN, M.; SIMAO, A. M. S.; RAMOS, A. P.; HOYLAERTS, M. F.; MILLAN, J. L.; CIANCAGLINI, P. Effect of the presence of cholesterol in the interfacial microenvironment on the modulation of the alkaline phosphatase activity during in vitro mineralization. COLLOIDS AND SURFACES B-BIOINTERFACES, v. 155, p. 466-476, JUL 1 2017. Citações Web of Science: 8.
ANDRADE, MARCO A. R.; FAVARIN, BRUNO; DERRADI, RAFAEL; BOLEAN, MAYTE; SIMAO, ANA MARIA S.; MILLAN, JOSE LUIS; CIANCAGLINI, PIETRO; RAMOS, ANA P. Pendant-drop method coupled to ultraviolet-visible spectroscopy: A useful tool to investigate interfacial phenomena. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, v. 504, p. 305-311, SEP 5 2016. Citações Web of Science: 3.
BOLEAN, MAYTE; SIMAO, ANA MARIA S.; KIFFER-MOREIRA, TINA; HOYLAERTS, MARC F.; MILLAN, JOSE LUIS; ITRI, ROSANGELA; CIANCAGLINI, PIETRO. Proteoliposomes with the ability to transport Ca2+ into the vesicles and hydrolyze phosphosubstrates on their surface. Archives of Biochemistry and Biophysics, v. 584, p. 79-89, OCT 15 2015. Citações Web of Science: 6.
GARCIA, A. F.; SIMAO, A. M. S.; BOLEAN, M.; HOYLAERTS, M. F.; MILLAN, J. L.; CIANCAGLINI, P.; COSTA-FILHO, A. J. Effects of GPI-anchored TNAP on the dynamic structure of model membranes. Physical Chemistry Chemical Physics, v. 17, n. 39, p. 26295-26301, 2015. Citações Web of Science: 3.

Por favor, reporte erros na lista de publicações científicas escrevendo para: cdi@fapesp.br.