Auxílio à pesquisa 14/50727-7 - Ondas gravitacionais, Estrelas de nêutrons - BV FAPESP
Busca avançada
Ano de início
Entree

Gravitational wave astronomy

Processo: 14/50727-7
Modalidade de apoio:Auxílio à Pesquisa - Regular
Data de Início da vigência: 01 de março de 2015
Data de Término da vigência: 31 de outubro de 2016
Área do conhecimento:Ciências Exatas e da Terra - Astronomia - Astrofísica Extragaláctica
Acordo de Cooperação: MIT
Pesquisador responsável:Riccardo Sturani
Beneficiário:Riccardo Sturani
Pesquisador Responsável no exterior: Erik Katsavoinidis
Instituição Parceira no exterior: Massachusetts Institute of Technology (MIT), Estados Unidos
Instituição Sede: Instituto de Física Teórica (IFT). Universidade Estadual Paulista (UNESP). Campus de São Paulo. São Paulo , SP, Brasil
Vinculado ao auxílio:12/14132-3 - Análise das ondas gravitacionais, AP.JP
Assunto(s):Ondas gravitacionais  Estrelas de nêutrons  Buracos negros 
Palavra(s)-Chave do Pesquisador:Astronomy | Black Holes | Gravitational Waves | Neutron Stars

Resumo

Gravitational waves (GW) were predicted by Einstein as a consequence of his theory of general relativity. They are produced when mass and energy distributions change their configuration; they present themselves as wave- like distortions of the space-time metric. Only extreme cosmological and astrophysical events may produce GWs at a detectable leveI. This includes the early universe, supernovae, binary compact star systems and pulsars. GWs from such systems will enable us to observe the Universe in a way complementary to what electromagnetic waves (and traditional astronomy) have offered us thus faro Two ground-based observatories, LIGO and Virgo, aim at detecting these waves directly. LIGO -- led by Caltech and MIT -- and Virgo --Ied by a French-Italian consortium-- use kilometer-scale laser interferometers in order to detect the quadrupolar strain characteristic of these waves. When the incoming wave interacts with the interferometer, such strain gives rise to differential changes of the length of the two arms which is measured through laser interferometry. The two observatories have completed their initial phase (2001-2010) without detecting GWs but only setting upper limits on their flux and possible strength. A second generation of these instruments is currently being installed at the two LIGO sites (one in Livingston, LA and another one in Hanford, WA) and at the Virgo site (near Pisa, Italy). This second generation interferometers, called Advanced LIGO (aLlGO) and Advanced Virgo (AdV), will offer an improvement in sensitivity of an order of magnitude with respect to the first generation instruments. Such an improvement will result to three orders of magnitude increase in the number of accessible astrophysical sources and it is expected to make the first direct detection of gravitational-wave sources. aLlGO and AdV will come online respectively in 2015 and 2016 and continue through commissioning and science running until they reach design sensitivity in 2019.Our proposal is focused in using GWs to study compact objects such as black holes (BH) and neutron stars (NS). Among the sources of detectable GWs, compact star binary systems made up of BH and/or NS are the most promising sources. Using Bayesian parameter estimation and model selection algorithms, we will be able to extract from the detected signals fundamental properties of BH and NS. These measurements will be in some cases complementary to what can be done with traditional astronomy, while in other cases they will enable new research. A Bayesian framework can be used to estimate the physical parameters of GW sources and to rank competing models which may describe the data (an example of such models may be the equation of state of NS). The problem of performing parameter estimation of GWs, which may depend on up to 15 unknown parameters, is non-trivial. Sophisticated stochastic samplers, such as Markov chain Monte Carlo or Nested Sampling, must be used to efficiently explore a highly correlated and multi-modal parameter space. We propose to bring together our data analysis and waveform modeling expertise in order to fully explore the capabilities provided by the gravitational-wave detectors in performing astrophysical measurements and observations. (AU)

Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio:
Mais itensMenos itens
Matéria(s) publicada(s) em Outras Mídias ( ):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Publicações científicas
(Referências obtidas automaticamente do Web of Science e do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores)
VITALE, SALVATORE; LYNCH, RYAN; RAYMOND, VIVIEN; STURANI, RICCARDO; VEITCH, JOHN; GRAFF, PHILIP. Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors. PHYSICAL REVIEW D, v. 95, n. 6, p. 17-pg., . (13/04538-5, 14/50727-7, 12/14132-3)
VITALE, SALVATORE; LYNCH, RYAN; RAYMOND, VIVIEN; STURANI, RICCARDO; VEITCH, JOHN; GRAFF, PHILIP. Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors. Physical Review D, v. 95, n. 6, . (13/04538-5, 14/50727-7, 12/14132-3)
VITALE, SALVATORE; LYNCH, RYAN; STURANI, RICCARDO; GRAFF, PHILIP. Use of gravitational waves to probe the formation channels of compact binaries. Classical and Quantum Gravity, v. 34, n. 3, . (13/04538-5, 14/50727-7)

Por favor, reporte erros na lista de publicações científicas utilizando este formulário.
X

Reporte um problema na página


Detalhes do problema: