Busca avançada
Ano de início
Entree

Sistemas miméticos de vesículas da matriz extracellular (MVs) para o estudo da regulação do processo de biomineralização: proteolipossomos contendo NPP1 e Anexina V

Processo: 16/21236-0
Linha de fomento:Auxílio à Pesquisa - Regular
Vigência: 01 de março de 2017 - 31 de maio de 2019
Área do conhecimento:Ciências Biológicas - Bioquímica - Enzimologia
Pesquisador responsável:Pietro Ciancaglini
Beneficiário:Pietro Ciancaglini
Instituição-sede: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP). Universidade de São Paulo (USP). Ribeirão Preto , SP, Brasil
Assunto(s):Biomineralização 

Resumo

O tecido ósseo é constituído por uma combinação de uma matriz de colágeno e uma matriz mineral, que é formada por cristais de fosfato de cálcio, sob a estrutura de hidroxiapatita. Este processo de acúmulo de mineral no tecido ósseo é denominado biomineralização e é realizado por células chamadas osteoblastos, por intermédio de liberação de vesículas da matriz (MVs). Estas vesículas surgem por brotamento das superfícies das células e são secretadas no local específico do início da biomineralização na matriz do tecido ósseo. MVs contém altas concentrações de íons Ca2+ e fosfato inorgânico (Pi), proporcionando um microambiente adequado para a formação inicial e propagação dos cristais de hidroxiapatita. Para que isso ocorra corretamente são necessárias varias proteínas/enzimas, bem como microambientes com condições bastante particulares. Uma atenção especial deve ser dada a algumas proteínas presentes nas MVs: Anexina V (AnxA5), fosfatase alcalina (TNAP) e nucleosídeo trifosfato difosfohidrolase 1 (NPP1). Tais proteínas regulam a formação de cristais de fosfato de cálcio, atuando assim diretamente no processo de mineralização óssea. Dentre as anexinas, especificamente a Anexina V, uma proteína de ~35 kDa, é responsável pela formação de canais de cálcio através de sua associação tanto com a face externa quanto interna da membrana das MVs. As anexinas também são responsáveis pela desorganização da membrana celular, que por sua vez resulta no processo de apoptose. A TNAP é uma fosfomonohidrolase inespecífica, capaz de hidrolisar monoésteres de fosfato, pirofosfato, diésteres de fosfato, bem como catalisar reações de transfosforilação. Está inserida à membrana plasmática das MVs por uma âncora de glicosilfosfatidilinositol (GPI) e é denominada "alcalina" por sua habilidade de efetuar estas reações de hidrólises de substratos mais eficientemente em pH acima do neutro (pH 8-11). Além disso, a TNAP tem um papel crucial em limitar a concentração de pirofosfato inorgânico extracelular (ePPi), um potente inibidor da mineralização, para manter uma razão Pi/PPi adequada para a mineralização óssea normal. A função primária da TNAP é degradar o ePPi, que é produzido ectoplasmicamente pela NPP1. Assim, a NPP1 tem a função de inibir a precipitação de hidroxiapatita por sua propriedade de geração de PPi, controlando a razão Pi/PPi. No presente projeto pretendemos estudar especificamente o envolvimento da proteína AnxA5 e da enzima NPP1, ambas reconstituídas em lipossomos, com o objetivo de formarmos sistemas miméticos de MVs e estudarmos como estas associações podem regular e/ou modular o processo de mineralização mediado por estas vesículas. Cabe destacar que é sempre dado um papel secundário a NPP1 (a TNAP que tem o papel principal) e deste modo pretendemos desvendar a verdadeira função desta enzima no processo de biomineralização. (AU)

Publicações científicas (10)
(Referências obtidas automaticamente do Web of Science e do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores)
DERRADI, R.; BOLEAN, M.; SIMAO, A. M. S.; CASELI, L.; MILLAN, J. L.; BOTTINI, M.; CIANCAGLINI, P.; RAMOS, A. P. Cholesterol Regulates the Incorporation and Catalytic Activity of Tissue-Nonspecific Alkaline Phosphatase in DPPC Monolayers. Langmuir, v. 35, n. 47, p. 15232-15241, NOV 26 2019. Citações Web of Science: 0.
CRUZ, M. A. E.; SOARES, M. P. R.; PAZIN, W.; ITO, A. S.; FUKADA, S. Y.; CIANCAGLINI, P.; RAMOS, A. P. Interface-driven Sr-morin complexation at Langmuir monolayers for bioactive coating design. COLLOIDS AND SURFACES B-BIOINTERFACES, v. 181, p. 856-863, SEP 1 2019. Citações Web of Science: 0.
SPER SIMAO, ANA MARIA; BOLEAN, MAYTE; FAVARIN, BRUNO ZOCCARATTO; VESCHI, EKEVELINY AMABILE; TOVANI, CAMILA BUSSOLA; RAMOS, ANA PAULA; BOTTINI, MASSIMO; BUCHET, RENE; MILLAN, JOSE LUIS; CIANCAGLINI, PIETRO. Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators. JOURNAL OF BONE AND MINERAL METABOLISM, v. 37, n. 4, p. 607-613, JUL 2019. Citações Web of Science: 3.
CRUZ, M. A. E.; ZANATTA, M. B. T.; DA VEIGA, M. A. M. S.; CIANCAGLINI, P.; RAMOS, A. P. Lipid-mediated growth of SrCO3/CaCO3 hybrid films as bioactive coatings for Ti surfaces. Materials Science & Engineering C-Materials for Biological Applications, v. 99, p. 762-769, JUN 2019. Citações Web of Science: 1.
PLAUT, JUSTIN S.; STRZELECKA-KILISZEK, AGNIESZKA; BOZYCKI, LUKASZ; PIKULA, SLAWOMIR; BUCHET, RENE; MEBAREK, SAIDA; CHADLI, MERIEM; BOLEAN, MAYTE; SIMAO, ANA M. S.; CIANCAGLINI, PIETRO; MAGRINI, ANDREA; ROSATO, NICOLA; MAGNE, DAVID; GIRARD-EGROT, AGNES; FARQUHARSON, COLIN; ESENER, SADIK C.; MILIAN, JOSE L.; BOTTINI, MASSIMO. Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization. Archives of Biochemistry and Biophysics, v. 667, p. 14-21, MAY 30 2019. Citações Web of Science: 1.
ANDRADE, MARCO A. R.; DERRADI, RAFAEL; SIMAO, ANA M. S.; MILLAN, JOSE LUIS; RAMOS, ANA P.; CIANCAGLINI, PIETRO; BOLEAN, MAYTE. Is alkaline phosphatase biomimeticaly immobilized on titanium able to propagate the biomineralization process?. Archives of Biochemistry and Biophysics, v. 663, p. 192-198, MAR 15 2019. Citações Web of Science: 2.
CRUZ, MARCOS A. E.; TOVANI, CAMILA B.; FAVARIN, BRUNO Z.; SOARES, MARIANA P. R.; FUKADA, SANDRA Y.; CIANCAGLINI, PIETRO; RAMOS, ANA P. Synthesis of Sr-morin complex and its in vitro response: decrease in osteoclast differentiation while sustaining osteoblast mineralization ability. JOURNAL OF MATERIALS CHEMISTRY B, v. 7, n. 5, p. 823-829, FEB 7 2019. Citações Web of Science: 2.
TOVANI, C. B.; FARIA, A. N.; CIANCAGLINI, P.; RAMOS, A. P. Collagen-supported CaCO3 cylindrical particles enhance Ti bioactivity. SURFACE & COATINGS TECHNOLOGY, v. 358, p. 858-864, JAN 25 2019. Citações Web of Science: 1.
BOTTINI, MASSIMO; MEBAREK, SAIDA; ANDERSON, KAREN L.; STRZELECKA-KILISZEK, AGNIESZKA; BOZYCKI, LUKASZ; SPER SIMAO, ANA MARIA; BOLEAN, MAYTE; CIANCAGLINI, PIETRO; PIKULA, JOANNA BANDOROWICZ; PIKULA, SLAWOMIR; MAGNE, DAVID; VOLKMANN, NIELS; HANEIN, DORIT; MILLAN, JOSE LUIS; BUCHET, RENE. Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, v. 1862, n. 3, p. 532-546, MAR 2018. Citações Web of Science: 23.
FAVARIN, B. Z.; ANDRADE, M. A. R.; BOLEAN, M.; SIMAO, A. M. S.; RAMOS, A. P.; HOYLAERTS, M. F.; MILLAN, J. L.; CIANCAGLINI, P. Effect of the presence of cholesterol in the interfacial microenvironment on the modulation of the alkaline phosphatase activity during in vitro mineralization. COLLOIDS AND SURFACES B-BIOINTERFACES, v. 155, p. 466-476, JUL 1 2017. Citações Web of Science: 9.

Por favor, reporte erros na lista de publicações científicas escrevendo para: cdi@fapesp.br.