Bolsa 23/02744-9 - Caos, Dinâmica não linear - BV FAPESP
Busca avançada
Ano de início
Entree

Caracterização de bacias de atração em sistemas dinâmicos

Processo: 23/02744-9
Modalidade de apoio:Bolsas no Brasil - Iniciação Científica
Data de Início da vigência: 01 de junho de 2023
Data de Término da vigência: 31 de dezembro de 2023
Área de conhecimento:Ciências Exatas e da Terra - Física
Pesquisador responsável:Rene Orlando Medrano Torricos
Beneficiário:Lucas de Lazari e Ferreira
Instituição Sede: Instituto de Geociências e Ciências Exatas (IGCE). Universidade Estadual Paulista (UNESP). Campus de Rio Claro. Rio Claro , SP, Brasil
Assunto(s):Caos   Dinâmica não linear   Estabilidade   Sistemas dinâmicos   Sistemas não lineares
Palavra(s)-Chave do Pesquisador:Bacia de Atração | Bacia Wada | Caos | Dinâmica Não Linear | estabilidade | sistemas dinâmicos | Sistemas não lineares

Resumo

Processos em evoluc'ao sao conhecidos como sistemas dinamicos e o seu comportamento pode ser caracterizado atraves da coleta ordenada de dados em tempos discretos cujo a regra e denominada de mapeamento discreto. Muito embora informac'oes continuas a respeito do progresso da dinamica sejam perdidas no processo de discretizac'ao, e possivel identificar os estados acessiveis do sistema a partir do conhecimento de sua configurac'ao inicial. Considerando o cenario em que perdas de energia sao observadas devido aýs dissipac'oes na dinamica, e possivel, em tempos de evoluc'ao suficientemente longos, observar a convergencia da dinamica no espac'o das configurac'oes aos conjuntos atrativos do sistema, genericamente chamados de atratores. O conjunto de condic'oes iniciais que convergem para um desses atratores do sistema e chamado de bacias de atrac'ao desse atrator.Em sistemas que apresentam multiestabilidade, as bacias de atrac'ao fornecem informac'oes da dinamica muito importantes sobre os modelos investigados. Dependendo em qual bacia se encontram as condic'oes iniciais, o sistema pode convergir para um estado estatico ou desenvolver oscilac'oes caoticas ou periodicas, contextos de importante impacto em sistemas dinamicos reais. Este projeto tem como principal objetivo estudar os diferentes tipos de bacias de atrac'ao em sistemas dinamicos discretos, com foco na caracterizac'ao de aspectos estruturais como o nivel de complexidade associada aý fronteira da bacia e a suas relac'oes com a natureza dinamica do sistema.

Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa:
Mais itensMenos itens
Matéria(s) publicada(s) em Outras Mídias ( ):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)