Busca avançada
Ano de início
Entree


Interactive segmentation of multiple 3D objects in medical images by optimum graph cuts : Segmentação interativa de múltiplos objetos 3D em imagens médicas por cortes ótimos em grafo

Autor(es):
Nikolas Moya
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Instituição: Universidade Estadual de Campinas. Instituto de Computação
Data de defesa:
Membros da banca:
Bruno Motta de Carvalho; Neucimar Jerônimo Leite
Orientador: Alexandre Xavier Falcão
Resumo

Segmentação de imagens médicas é crucial para extrair medidas de objetos 3D (estruturas anatômicas) que são úteis no diagnóstico e tratamento de doenças. Nestas aplicações, segmentação interativa é necessária quando métodos automáticos falham ou não são factíveis. Métodos por corte em grafo são considerados o estado da arte em segmentação interativa, mas diversas abordagens utilizam o algoritmo min-cut/max-flow, que é limitado à segmentação binária, sendo que segmentação de múltiplos objetos pode economizar tempo e esforço do usuário. Este trabalho revisita a transformada imagem floresta diferencial (DIFT, em inglês) -- uma abordagem por corte em grafo adequada para segmentação de múltiplos objetos -- resolvendo problemas relacionados a ela. O algoritmo da DIFT executa em tempo proporcional ao número de voxels nas regiões modificadas em cada execução da segmentação (sublinear). Tal característica é altamente desejável em segmentação interativa de imagens 3D para responder as ações do usuário em tempo real. O algoritmo da DIFT funciona da seguinte forma: o usuário desenha marcadores (traço com voxels de semente) rotulados dentro de cada objeto e o fundo, enquanto o computador interpreta a imagem como um grafo, cujos nós são os voxels e os arcos são definidos por pixels vizinhos, produzindo como resultado uma floresta de caminhos ótimos (partição na imagem) enraizada nos nós sementes do grafo. Nesta floresta, cada objeto é representado pela floresta de caminhos ótimos enraizado em suas sementes internas. Tais árvores são pintadas com a mesmo cor associada ao rótulo do marcador correspondente. Ao adicionar ou remover marcadores, é possível corrigir a segmentação até o mapa de rótulo de objeto representar o resultado desejado. Para garantir consistência na segmentação, métodos baseados em semente sempre devem manter a conectividade entre os voxels e suas sementes. Entretanto, isto não é mantido em algumas abordagens, como Random Walkers ou quando o mapa de rótulos é filtrado para suavizar a fronteira dos objetos. Esta conectividade é primordial para realizar correções sem recomeçar o processo depois de cada intervenção do usuário. Todavia, foi observado que a DIFT falha em manter consistência da segmentação em alguns casos. Consertamos este problema tanto no algoritmo da DIFT, quanto após a suavização dos objetos. Estes resultados comparam diversas estruturas anatômicas 3D de imagens de ressonância magnética e tomografia computadorizada. (AU)

Processo FAPESP: 13/17991-0 - Uma abordagem relaxada e eficiente para segmentação interativa de múltiplos objetos por corte em grafo.
Beneficiário:Nikolas Moya
Linha de fomento: Bolsas no Brasil - Mestrado