Busca avançada
Ano de início
Entree


Problemas variacionais geometricos

Autor(es):
Gil Ramos Cavalcanti
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Paolo Piccione; Helena Judith Nussenzveig Lopes
Orientador: Renato Hyuda de Luna Pedrosa
Resumo

Nesta dissertação tratamos dois problemas variacionais geométricos: O Problema Isoperimétrico e a Desigualdade de Faber-Krahn. A partir da noção de funções de variação limitada e conjuntos de perímetro finito (a la de Giorgi), apresentamos a resolução do primeiro problema no espaço euclidiano. Também são feitas as contas referentes às fórmulas de variação, que caracterizam, em uma variedade riemanniana. quais são os possíveis candidatos a solução do problema e, por fim, demonstramos o Teorema de Gromov-Levv. que consiste na determinação de um perfil isoperimétrico para uma variedade com curvaturas de Ricci limitadas inferiormente por um número positivo. No caso da esfera, este teorema fornece a solução do problema isoperimétrico. A desigualdade de Faber-Krahn é resolvida em variedades rotacionalmente simétricas com hipóteses sobre as soluções do problema isoperimétrico. Entre as variedades que satisfazem as hipóteses necessárias para a resolução estão todas as formas espaciais simplesmente conexas, parabolóides e certos ovalóides dois dimensionais. Conseguimos ainda teoremas comparando a desigualdade de Faber-Krahn em variedades com alguma espécie de limitação na curvatura com a desigualdade de Faber-Krahn nas formas simplesmente conexas (AU)

Processo FAPESP: 98/13163-3 - Problemas variacionais geométricos
Beneficiário:Gil Ramos Cavalcanti
Linha de fomento: Bolsas no Brasil - Mestrado