Busca avançada
Ano de início
Entree


Semi-automatic classification of remote sensing images = : Classificação semi-automática de imagens de sensorimento remoto

Autor(es):
Jefersson Alex dos Santos
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Computação
Data de defesa:
Membros da banca:
Sylvie Philipp Foliguet; William Robson Schwartz; Siome Klein Goldenstein; Franck Jocelyn Chanussot
Orientador: Ricardo da Silva Torres
Resumo

Um grande esforço tem sido feito para desenvolver sistemas de classificação de imagens capazes de criar mapas temáticos de alta qualidade e estabelecer inventários precisos sobre o uso do solo. As peculiaridades das imagens de sensoriamento remoto (ISR), combinados com os desafios tradicionais de classificação de imagens, tornam a classificação de ISRs uma tarefa difícil. Grande parte dos desafios de pesquisa estão relacionados à escala de representação dos dados e, ao mesmo tempo, à dimensão e à representatividade do conjunto de treinamento utilizado. O principal foco desse trabalho está nos problemas relacionados à representação dos dados e à extração de características. O objetivo é desenvolver soluções efetivas para classificação interativa de imagens de sensoriamento remoto. Esse objetivo foi alcançado a partir do desenvolvimento de quatro linhas de pesquisa. A primeira linha de pesquisa está relacionada ao fato de embora descritores de imagens propostos na literatura obterem bons resultados em várias aplicações, muitos deles nunca foram usados para classificação de imagens de sensoriamento remoto. Nessa tese, foram testados doze descritores que codificam propriedades espectrais e sete descritores de textura. Também foi proposta uma metodologia baseada no classificador K-Vizinhos mais Próximos (K-nearest neighbors - KNN) para avaliação de descritores no contexto de classificação. Os descritores Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition (SID) e Quantized Compound Change Histogram (QCCH), apresentaram os melhores resultados experimentais na identificação de alvos de café e pastagem. A segunda linha de pesquisa se refere ao problema de seleção de escalas de segmentação para classificação de imagens de sensoriamento baseada em objetos. Métodos propostos recentemente exploram características extraídas de objetos segmentados para melhorar a classificação de imagens de alta resolução. Entretanto, definir uma escala de segmentação adequada é uma tarefa desafiadora. Nessa tese, foram propostas duas abordagens de classificação multiescala baseadas no algoritmo Adaboost. A primeira abordagem, Multiscale Classifier (MSC), constrói um classificador forte que combina características extraídas de múltiplas escalas de segmentação. A outra, Hierarchical Multiscale Classifier (HMSC), explora a relação hierárquica das regiões segmentadas para melhorar a eficiência sem reduzir a qualidade da classificação xi quando comparada à abordagem MSC. Os experimentos realizados mostram que é melhor usar múltiplas escalas do que utilizar apenas uma escala de segmentação. A correlação entre os descritores e as escalas de segmentação também é analisada e discutida. A terceira linha de pesquisa trata da seleção de amostras de treinamento e do refinamento dos resultados da classificação utilizando segmentação multiescala. Para isso, foi proposto um método interativo para classificação multiescala de imagens de sensoriamento remoto. Esse método utiliza uma estratégia baseada em aprendizado ativo que permite o refinamento dos resultados de classificação pelo usuário ao longo de interações. Os resultados experimentais mostraram que a combinação de escalas produzem melhores resultados do que a utilização de escalas isoladas em um processo de realimentação de relevância. Além disso, o método interativo obtém bons resultados com poucas interações. O método proposto necessita apenas de uma pequena porção do conjunto de treinamento para construir classificadores tão fortes quanto os gerados por um método supervisionado utilizando todo o conjunto de treinamento disponível. A quarta linha de pesquisa se refere à extração de características de uma hierarquia de regiões para classificação multiescala. Assim, foi proposta uma abordagem que explora as relações existentes entre as regiões da hierarquia. Essa abordagem, chamada BoW-Propagation, utiliza o modelo bag-of-visual-word para propagar características ao longo de múltiplas escalas. Essa ideia foi estendida para propagar descritores globais baseados em histogramas, a abordagem H-Propagation. As abordagens propostas aceleram o processo de extração e obtém bons resultados quando comparadas a descritores globais. (AU)

Processo FAPESP: 08/58528-2 - Classificacao semi-automatica de regioes em imagens de sensoriamento remoto utilizando realimentacao de relevancia
Beneficiário:Jefersson Alex dos Santos
Linha de fomento: Bolsas no Brasil - Doutorado