Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Matching based ground-truth annotation for online handwritten mathematical expressions

Texto completo
Hirata, Nina S. T. [1] ; Julca-Aguilar, Frank D. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, BR-1010 Sao Paulo - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: PATTERN RECOGNITION; v. 48, n. 3, p. 837-848, MAR 2015.
Citações Web of Science: 4

Assessment of mathematical expression recognition at expression level only is not sufficient to diagnose strengths and weaknesses of different recognition systems. In order to make assessment at different levels possible, large datasets annotated with ground-truth data at different levels, such as at symbol segmentation, symbol classification, symbol/sub-expression spatial relationships, baselines or whole expression levels, are needed. Creation of ground-truthed datasets of handwritten mathematical expressions is a challenging task due to the need to cope with a large variability of symbol classes, expression layouts, writing styles, among other issues including the fact that manual annotation is an error-prone procedure. We propose an expression matching approach where symbols in a transcribed expression are assigned to the corresponding symbols in the respective model expression. Matching is formulated as a simple linear assignment problem where matching cost is defined as a weighted linear combination of local (symbol) and global (structural) characteristics. Once a symbol-to-symbol assignment is computed, not only symbol labels but all other ground-truth data attached to the model expression can be automatically transferred to the transcribed expression. We use two independent large test sets to empirically evaluate the influence of the cost function terms on matching performance. Results show mean symbol assignment rates above 99% on both sets, suggesting the potential of the method as an useful tool for helping the creation of ground-truthed online mathematical expression datasets. (C) 2014 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 13/13535-0 - Análise estrutural de expressões matemáticas manuscritas usando informação contextual
Beneficiário:Frank Dennis Julca Aguilar
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Doutorado Direto
Processo FAPESP: 12/08389-1 - Uso de informação contextual em reconhecimento online de expressões matemáticas manuscritas
Beneficiário:Frank Dennis Julca Aguilar
Linha de fomento: Bolsas no Brasil - Doutorado Direto