Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Beans quality inspection using correlation-based granulometry

Texto completo
Autor(es):
de Araujo, Sidnei Alves [1, 2] ; Pessota, Jorge Henrique [2] ; Kim, Hae Yong [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Escola Politecn, BR-05508010 Sao Paulo, SP - Brazil
[2] Univ Nove Julho, Ind Engn Postgrad Program, BR-05001100 Sao Paulo, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE; v. 40, p. 84-94, APR 2015.
Citações Web of Science: 10
Resumo

Bean constitutes, with rice, the staple diet of the Brazilian people. The quality control of beans includes computing the percentages of different varieties present in a batch of beans. The selling price of the batch depends on these percentages. In this work, we propose a computer system for visual inspection of beans. We use ``correlation-based multi-shape granulometry{''} for the first time to spatially localize each grain in the image, together with its size, eccentricity and rotation angle. Using this technique, our system localized correctly 29,993 grains out of 30,000, even in images where many grains were ``glued{''} together. This is the main contribution of our work, because usually other systems fail to individualize ``glued{''} grains. Probably, the same technique can be used in many other agricultural product inspection systems to segment seeds and grains. After segmenting the grains, the system classifies each grain as one of the three most consumed varieties in Brazil, using a technique based on k-means and k-NN algorithms. This module classified correctly 29,956 grains out of 29,993. These extremely high success rates indicate that proposed system can actually be applied in automated inspection of beans. (C) 2015 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 14/09194-5 - Classificador inteligente aplicado à inspeção da qualidade visual de grãos de feijão
Beneficiário:Sidnei Alves de Araújo
Linha de fomento: Auxílio à Pesquisa - Regular