Condições de estabilidade em variedades de dimensão alta e espaços de módulos
Estudo da expressão de genes envolvidos na resposta antiviral de lagartas da famíl...
Evolução cariotípica e de cromossomos sexuais em peixes neotropicais
Texto completo | |
Autor(es): |
Tacchella, Alberto
[1]
Número total de Autores: 1
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, ICMC, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | JOURNAL OF GEOMETRY AND PHYSICS; v. 93, p. 11-32, JUL 2015. |
Citações Web of Science: | 1 |
Resumo | |
We introduce a family of quivers Z(r) (labeled by a natural number r >= 1) and study the non-commutative symplectic geometry of the corresponding doubles Q(r). We show that the group of non-commutative symplectomorphisms of the path algebra CQ(r) contains two copies of the group GL(r) over a ring of polynomials in one indeterminate, and that a particular subgroup P-r (which contains both of these copies) acts on the completion e(n,r) of the phase space of the n-particles, rank r Gibbons-Hermsen integrable system and connects each pair of points belonging to a certain dense open subset of e(n,r). This generalizes some known results for the cases r = 1 and r = 2. (C) 2015 Elsevier B.V. All rights reserved. (AU) | |
Processo FAPESP: | 11/09782-6 - Variedades de Gibbons-Hermsen e geometria não comutativa |
Beneficiário: | Alberto Tacchella |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |