Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A semi-continuous MIP model for the irregular strip packing problem

Texto completo
Autor(es):
Leao, Aline A. S. [1] ; Toledo, Franklina M. B. [1] ; Oliveira, Jose Fernando [2] ; Carravilla, Maria Antonia [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560 Sao Carlos - Brazil
[2] Univ Porto, INESC TEC, Fac Engn, Rua Campo Alegre 823, P-4100 Oporto - Portugal
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH; v. 54, n. 3, SI, p. 712-721, FEB 1 2016.
Citações Web of Science: 9
Resumo

Solving nesting problems involves the waste minimisation in cutting processes, and therefore it is not only economically relevant for many industries but has also an important environmental impact, as the raw materials that are cut are usually a natural resource. However, very few exact approaches have been proposed in the literature for the nesting problem (also known as irregular packing problem), and the majority of the known approaches are heuristic algorithms, leading to suboptimal solutions. The few mathematical programming models known for this problem can be divided into discrete and continuous models, based on how the placement coordinates of the pieces to be cut are dealt with. In this paper, we propose an innovative semi-continuous mixed-integer programming model for two-dimensional cutting and packing problems with irregular shaped pieces. The model aims to exploit the advantages of the two previous classes of approaches and discretises the {[}GRAPHICS] -axis while keeping the {[}GRAPHICS] -coordinate continuous. The board can therefore be seen as a set of stripes. Computational results show that the model, when solved by a commercial solver, can deal with large problems and determine the optimal solution for smaller instances, but as it happens with discrete models, the optimal solution value depends on the discretisation step that is used. (AU)

Processo FAPESP: 12/21176-7 - Formulações matemáticas para o problema de corte de peças irregulares
Beneficiário:Aline Aparecida de Souza Leão
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 10/10133-0 - Problemas de corte, empacotamento, dimensionamento de lotes e programação da produção, e suas integrações em contextos industriais e logísticos
Beneficiário:Reinaldo Morabito Neto
Linha de fomento: Auxílio à Pesquisa - Temático