Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil

Texto completo
Autor(es):
Lowe, Rachel [1] ; Coelho, Caio A. S. [2] ; Barcellos, Christovam [3] ; Carvalho, Marilia Sa [3] ; Catao, Rafael De Castro [4, 1] ; Coelho, Giovanini E. [5] ; Ramalho, Walter Massa [6] ; Bailey, Trevor C. [7] ; Stephenson, David B. [7] ; Rodo, Xavier [8, 1]
Número total de Autores: 10
Afiliação do(s) autor(es):
[1] Inst Catala Ciencies Clima, Climate Dynam & Impacts Unit, Barcelona - Spain
[2] Inst Nacl Pesquisas Espaciais, Ctr Previsao Tempo & Estudos Climat, Cachoeira Paulista - Brazil
[3] Fundacao Oswaldo Cruz, Rio De Janeiro - Brazil
[4] Univ Estadual Paulista, Fac Ciencias & Tecnol, Presidente Prudente - Brazil
[5] Minist Saude, Programa Nacl Controle Dengue, Coordenacao Geral, Brasilia, DF - Brazil
[6] Univ Brasilia, Fac Ceilandia, Brasilia, DF - Brazil
[7] Univ Exeter, Coll Engn Math & Phys Sci, Exeter Climate Syst, Exeter, Devon - England
[8] Inst Catalana Recerca & Estudis Avancats, Barcelona - Spain
Número total de Afiliações: 8
Tipo de documento: Artigo Científico
Fonte: eLIFE; v. 5, FEB 24 2016.
Citações Web of Science: 19
Resumo

Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. (AU)

Processo FAPESP: 14/17676-0 - Geografia do dengue em São Paulo: as barreiras geográficas da difusão espacial
Beneficiário:Rafael de Castro Catão
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado