Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Computation of contour integrals on M-0,M-n

Texto completo
Autor(es):
Cachazo, Freddy [1] ; Gomez, Humberto [1, 2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5 - Canada
[2] UNESP Univ Estadual Paulista, Inst Fis Teor, Caixa Postal 70532-2, BR-01156970 Sao Paulo, SP - Brazil
[3] Univ Santiago Cali, Fac Ciencias Basicas, Calle 5 62-00, Cali - Colombia
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of High Energy Physics; n. 4 APR 19 2016.
Citações Web of Science: 32
Resumo

Contour integrals of rational functions over M-0,M-n, the moduli space of n punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on M-0,M-n. The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen's theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4 regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory. (AU)

Processo FAPESP: 11/13013-8 - Amplitudes de espalhamento, spinores puros e AdS/CFT
Beneficiário:Humberto Gomez Zuñiga
Linha de fomento: Bolsas no Brasil - Pós-Doutorado