Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Extinction Profiles for the Classification of Remote Sensing Data

Texto completo
Autor(es):
Ghamisi, Pedram ; Souza, Roberto ; Benediktsson, Jon Atli ; Zhu, Xiao Xiang ; Rittner, Leticia ; Lotufo, Roberto A.
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING; v. 54, n. 10, p. 5631-5645, OCT 2016.
Citações Web of Science: 41
Resumo

With respect to recent advances in remote sensing technologies, the spatial resolution of airborne and spaceborne sensors is getting finer, which enables us to precisely analyze even small objects on the Earth. This fact has made the research area of developing efficient approaches to extract spatial and contextual information highly active. Among the existing approaches, morphological profile and attribute profile (AP) have gained great attention due to their ability to classify remote sensing data. This paper proposes a novel approach that makes it possible to precisely extract spatial and contextual information from remote sensing images. The proposed approach is based on extinction filters, which are used here for the first time in the remote sensing community. Then, the approach is carried out on two well-known high-resolution panchromatic data sets captured over Rome, Italy, and Reykjavik, Iceland. In order to prove the capabilities of the proposed approach, the obtained results are compared with the results from one of the strongest approaches in the literature, i.e., APs, using different points of view such as classification accuracies, simplification rate, and complexity analysis. Results indicate that the proposed approach can significantly outperform its alternative in terms of classification accuracies. In addition, based on our implementation, profiles can be generated in a very short processing time. It should be noted that the proposed approach is fully automatic. (AU)

Processo FAPESP: 15/12127-0 - Max-trees aplicadas a segmentação de imagens médicas
Beneficiário:Roberto Medeiros de Souza
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 13/23514-0 - Árvore máxima: teoria, algoritmos e aplicações
Beneficiário:Roberto Medeiros de Souza
Linha de fomento: Bolsas no Brasil - Doutorado
Processo FAPESP: 13/07559-3 - Instituto Brasileiro de Neurociência e Neurotecnologia - BRAINN
Beneficiário:Fernando Cendes
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs