Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Microscopic theory of a nonequilibrium open bosonic chain

Texto completo
Autor(es):
Santos, Jader P. ; Landi, Gabriel T.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Physical Review E; v. 94, n. 6 DEC 28 2016.
Citações Web of Science: 11
Resumo

Quantum master equations form an important tool in the description of transport problems in open quantum systems. However, they suffer from the difficulty that the shape of the Lindblad dissipator depends sensibly on the system Hamiltonian. Consequently, most of the work done in this field has focused on phenomenological dissipators which act locally on different parts of the system. In this paper we show how to construct Lindblad dissipators to model a one-dimensional bosonic tight-binding chain connected to two baths at the first and last site, kept at different temperatures and chemical potentials. We show that even though the bath coupling is local, the effective Lindblad dissipator stemming from this interaction is inherently nonlocal, affecting all normal modes of the system. We then use this formalism to study the current of particles and energy through the system and find that they have the structure of Landauer's formula, with the bath spectral density playing the role of the transfer integral. Finally, we consider infinitesimal temperature and chemical potential gradients and show that the currents satisfy Onsager's reciprocal relations, which is a consequence of the fact that the microscopic quantum dynamics obeys detailed balance. (AU)

Processo FAPESP: 16/08721-7 - Modelagem estocástica de sistemas quânticos fora do equilíbrio
Beneficiário:Gabriel Teixeira Landi
Linha de fomento: Auxílio à Pesquisa - Regular