Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Pornography classification: The hidden clues in video space-time

Texto completo
Autor(es):
Moreira, Daniel ; Avila, Sandra ; Perez, Mauricio ; Moraes, Daniel ; Testoni, Vanessa ; Valle, Eduardo ; Goldenstein, Siome ; Rocha, Anderson
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: Forensic Science International; v. 268, p. 46-61, NOV 2016.
Citações Web of Science: 10
Resumo

As web technologies and social networks become part of the general public's life, the problem of automatically detecting pornography is into every parent's mind - nobody feels completely safe when their children go online. In this paper, we focus on video-pornography classification, a hard problem in which traditional methods often employ still-image techniques - labeling frames individually prior to a global decision. Frame-based approaches, however, ignore significant cogent information brought by motion. Here, we introduce a space-temporal interest point detector and descriptor called Temporal Robust Features (TRoF). TRoF was custom-tailored for efficient (low processing time and memory footprint) and effective (high classification accuracy and low false negative rate) motion description, particularly suited to the task at hand. We aggregate local information extracted by TRoF into a mid-level representation using Fisher Vectors, the state-of-the-art model of Bags of Visual Words (BoVW). We evaluate our original strategy, contrasting it both to commercial pornography detection solutions, and to BoVW solutions based upon other space-temporal features from the scientific literature. The performance is assessed using the Pornography-2k dataset, a new challenging pornographic benchmark, comprising 2000 web videos and 140 h of video footage. The dataset is also a contribution of this work and is very assorted, including both professional and amateur content, and it depicts several genres of pornography, from cartoon to live action, with diverse behavior and ethnicity. The best approach, based on a dense application of TRoF, yields a classification error reduction of almost 79% when compared to the best commercial classifier. A sparse description relying on TRoF detector is also noteworthy, for yielding a classification error reduction of over 69%, with 19x less memory footprint than the dense solution, and yet can also be implemented to meet real-time requirements. (C) 2016 Elsevier Ireland Ltd. All rights reserved. (AU)

Processo FAPESP: 15/19222-9 - DéjáVu: análise forense de mídias sociais para interpretação de eventos criminais
Beneficiário:Anderson de Rezende Rocha
Linha de fomento: Bolsas no Exterior - Pesquisa