Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Evolution of redback radio pulsars in globular clusters

Texto completo
Autor(es):
Benvenuto, O. G. ; De Vito, M. A. ; Horvath, J. E.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Astronomy & Astrophysics; v. 598, FEB 2017.
Citações Web of Science: 1
Resumo

Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims. We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods. We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results. We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions. The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration. (AU)

Processo FAPESP: 13/26258-4 - Matéria superdensa no universo
Beneficiário:Manuel Máximo Bastos Malheiro de Oliveira
Linha de fomento: Auxílio à Pesquisa - Temático