Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Heuristic and Genetic Algorithm Approaches for UAV Path Planning under Critical Situation

Texto completo
Autor(es):
Arantes, Jesimar da Silva ; Arantes, Marcio da Silva ; Motta Toledo, Claudio Fabiano ; Trindade Junior, Onofre ; Williams, Brian Charles
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: International Journal on Artificial Intelligence Tools; v. 26, n. 1, SI FEB 2017.
Citações Web of Science: 13
Resumo

The present paper applies a heuristic and genetic algorithms approaches to the path planning problem for Unmanned Aerial Vehicles (UAVs), during an emergency landing, without putting at risk people and properties. The path re-planning can be caused by critical situations such as equipment failures or extreme environmental events, which lead the current UAV mission to be aborted by executing an emergency landing. This path planning problem is introduced through a mathematical formulation, where all problem constraints are properly described. Planner algorithms must define a new path to land the UAV following problem constraints. Three path planning approaches are introduced: greedy heuristic, genetic algorithm and multi-population genetic algorithm. The greedy heuristic aims at quickly find feasible paths, while the genetic algorithms are able to return better quality solutions within a reasonable computational time. These methods are evaluated over a large set of scenarios with different levels of difficulty. Simulations are also conducted by using FlightGear simulator, where the UAV's behaviour is evaluated for different wind velocities and wind directions. Statistical analysis reveal that combining the greedy heuristic with the genetic algorithms is a good strategy for this problem. (AU)

Processo FAPESP: 13/26091-2 - Estudo e proposição de métodos para o general Chance-Constrained Qualitative state planning problem
Beneficiário:Claudio Fabiano Motta Toledo
Linha de fomento: Bolsas no Exterior - Pesquisa
Processo FAPESP: 14/12297-0 - Planejamento de rota em voo para VANTs em caso de situação crítica: uma abordagem baseada em segurança
Beneficiário:Jesimar da Silva Arantes
Linha de fomento: Bolsas no Brasil - Mestrado