Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Computing numerical solutions of the pseudo-parabolic Buckley Leverett equation with dynamic capillary pressure

Texto completo
Autor(es):
Abreu, Eduardo ; Vieira, Jardel
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: MATHEMATICS AND COMPUTERS IN SIMULATION; v. 137, n. SI, p. 29-48, JUL 2017.
Citações Web of Science: 4
Resumo

We present numerical approaches for solving a pseudo-parabolic partial differential equation, which models incompressible two phase flow in porous media taking into account dynamic effects in the capillary pressure. First, we briefly discuss two numerical schemes based on the operator splitting technique. Our numerical experiments show that the standard splitting, widely used to solve parabolic problems, may fail when applied to pseudo-parabolic models. As an illustration, we give an example for this case. So we present an operator splitting scheme based on a dispersive-like character that obtains correct numerical solutions. Then, we discuss an unsplit efficient numerical modelling, locally conservative by construction. This framework is based on a fully coupled space time mixed hybrid finite element/volume discretization approach in order to account for the delicate local nonlinear balance between the numerical approximations of the hyperbolic flux and the pseudo-parabolic term, but linked to a natural dispersive like character of the full pseudo-parabolic equation. We compare our numerical results with approximate solutions constructed with methods recently introduced in the specialized literature, in order to establish that we are computing the expected qualitative behaviour of the solutions. (C) 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 14/03204-9 - Computando aproximações qualitativamente corretas de equações diferenciais parciais em fenômenos de transporte em meios porosos
Beneficiário:Eduardo Cardoso de Abreu
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 11/23628-0 - Sistemas de leis de balanço em problemas de dinâmica de fluidos em meios porosos: modelagem matemática e aproximação numérica
Beneficiário:Abel Alvarez Bustos
Linha de fomento: Bolsas no Brasil - Doutorado