Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Decomposition methods for the lot-sizing and cutting-stock problems in paper industries

Texto completo
Autor(es):
Leao, Aline A. S. ; Furlan, Marcos M. ; Toledo, Franklina M. B.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Applied Mathematical Modelling; v. 48, p. 250-268, AUG 2017.
Citações Web of Science: 3
Resumo

We investigate the one-dimensional cutting-stock problem integrated with the lot-sizing problem in the context of paper industries. The production process in paper mill industries consists of producing raw materials characterized by rolls of paper and cutting them into smaller rolls according to customer requirements. Typically, both problems are dealt with in sequence, but if the decisions concerning the cutting patterns and the production of rolls are made together, it can result in better resource management. We investigate Dantzig-Wolfe decompositions and develop column generation techniques to obtain upper and lower bounds for the integrated problem. First, we analyze the classical column generation method for the cutting-stock problem embedded in the integrated problem. Second, we propose the machine decomposition that is compared with the classical period decomposition for the lot-sizing problem. The machine decomposition model and the period decomposition model provide the same lower bound, which is recognized as being better than the linear relaxation of the classical lot-sizing model. To obtain feasible solutions, a rounding heuristic is applied after the column generation method. In addition, we propose a method that combines an adaptive large neighborhood search and column generation method, which is performed on the machine decomposition model. We carried out computational experiments on instances from the literature and on instances adapted from real-world data. The rounding heuristic applied to the first column generation method and the adaptive large neighborhood search combined with the column generation method are efficient and competitive. (C) 2017 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 08/09046-5 - Problemas da mochila compartimentada: casos unidimensional e bidimensional
Beneficiário:Aline Aparecida de Souza Leão
Linha de fomento: Bolsas no Brasil - Doutorado
Processo FAPESP: 12/21176-7 - Formulações matemáticas para o problema de corte de peças irregulares
Beneficiário:Aline Aparecida de Souza Leão
Linha de fomento: Bolsas no Brasil - Pós-Doutorado