Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bayesian analysis of CCDM models

Texto completo
Autor(es):
Jesus, J. F. ; Valentim, R. ; Andrade-Olivera, F.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Cosmology and Astroparticle Physics; n. 9 SEP 2017.
Citações Web of Science: 0
Resumo

Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/Lambda CDM model, however, neither of these, nor Gamma = 3 alpha H-0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed. (AU)

Processo FAPESP: 16/09831-0 - Populações de estrelas de nêutrons: ferramentas estatísticas bayesianas
Beneficiário:Rodolfo Valentim da Costa Lima
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 17/05859-0 - O universo acelerado: natureza e testes da energia escura e matéria escura
Beneficiário:José Fernando de Jesus
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/26258-4 - Matéria superdensa no universo
Beneficiário:Manuel Máximo Bastos Malheiro de Oliveira
Linha de fomento: Auxílio à Pesquisa - Temático