Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Kuaa: A unified framework for design, deployment, execution, and recommendation of machine learning experiments

Texto completo
Autor(es):
Werneck, Rafael de Oliveira [1] ; de Almeida, Waldir Rodrigues [1] ; Stein, Bernardo Vecchia [1] ; Pazinato, Daniel Vatanabe [1] ; Mendes Junior, Pedro Ribeiro [1] ; Bizetto Penatti, Otavio Augusto [1, 2] ; Rocha, Anderson [1] ; Torres, Ricardo da Silva [1]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Univ Campinas Unicamp, RECOD Lab, IC, Av Albert Einstein 1251, BR-13083852 Campinas, SP - Brazil
[2] SAMSUNG Res Inst, Adv Technol Grp, Av Cambacica, 1200, Bldg 1, BR-13097160 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE; v. 78, n. 1, p. 59-76, JAN 2018.
Citações Web of Science: 0
Resumo

In this work, we propose Kuaa, a workflow-based framework that can be used for designing, deploying, and executing machine learning experiments in an automated fashion. This framework is able to provide a standardized environment for exploratory analysis of machine learning solutions, as it supports the evaluation of feature descriptors, normalizers, classifiers, and fusion approaches in a wide range of tasks involving machine learning. Kuaa also is capable of providing users with the recommendation of machine-learning workflows. The use of recommendations allows users to identify, evaluate, and possibly reuse previously defined successful solutions. We propose the use of similarity measures (e.g., Jaccard, Sorensen, and Jaro-Winkler) and learning-to-rank methods (LRAR) in the implementation of the recommendation service. Experimental results show that Jaro-Winkler yields the highest effectiveness performance with comparable results to those observed for LRAR, presenting the best alternative machine learning experiments to the user. In both cases, the recommendations performed are very promising and the developed framework might help users in different daily exploratory machine learning tasks. (C) 2017 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/50155-0 - Combining new technologies to monitor phenology from leaves to ecosystems
Beneficiário:Leonor Patricia Cerdeira Morellato
Linha de fomento: Auxílio à Pesquisa - Programa de Pesquisa sobre Mudanças Climáticas Globais - PITE
Processo FAPESP: 13/50169-1 - Towards an understanding of tipping points within tropical South American biomes
Beneficiário:Ricardo da Silva Torres
Linha de fomento: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 16/18429-1 - Uma abordagem baseada em sacola de grafos para representações envolvendo múltiplas modalidades
Beneficiário:Rafael de Oliveira Werneck
Linha de fomento: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/19222-9 - DéjáVu: análise forense de mídias sociais para interpretação de eventos criminais
Beneficiário:Anderson de Rezende Rocha
Linha de fomento: Bolsas no Exterior - Pesquisa