Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Regularity for Second-Order Stationary Mean-Field Games

Texto completo
Autor(es):
Pimentel, Edgard A. [1] ; Voskanyan, Vardan [2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Pontificia Univ Catolica Rio de Janerio PUC Rio, Dept Math, BR-22451900 Gavea, RJ - Brazil
[2] KAUST, CEMSE Div, Thuwal 239556900 - Saudi Arabia
[3] Kaust Sri Ctr Uncertainty Quantificat Computat Sc, Thuwal - Saudi Arabia
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Indiana University Mathematics Journal; v. 66, n. 1, p. 1-22, 2017.
Citações Web of Science: 10
Resumo

In this paper, we prove the existence of classical solutions for second-order stationary mean-field game systems. These arise in ergodic (mean-field) optimal control, convex degenerate problems in calculus of variations, and in the study of long-time behavior of time-dependent mean-field games. Our argument is based on the interplay between the regularity of solutions of the Hamilton-Jacobi equation in terms of the solutions of the Fokker-Planck equation and vice-versa. Because we consider different classes of couplings, distinct techniques are used to obtain a priori estimates for the density. In the case of polynomial couplings, we resort to an iterative method. An integral method builds upon the properties of the logarithmic function in the setting of logarithmic nonlinearities. This work extends substantially previous results by allowing for more general classes of Hamiltonians and mean-field assumptions. (AU)

Processo FAPESP: 15/13011-6 - Equações diferenciais parciais não-lineares: boa colocação e teoria de regularidade
Beneficiário:Edgard Almeida Pimentel
Linha de fomento: Auxílio à Pesquisa - Regular