Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Numerical relativity simulations of precessing binary neutron star mergers

Texto completo
Autor(es):
Dietrich, Tim [1, 2] ; Bernuzzi, Sebastiano [3, 4] ; Bruegmann, Bernd [5] ; Ujevic, Maximiliano [6] ; Tichy, Wolfgang [7]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Potsdam - Germany
[2] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam - Netherlands
[3] Univ Parma, Dipartimento Sci Matemat Fis & Informat, I-43124 Parma - Italy
[4] Ist Nazl Fis Nucl, Sez Milano Bicocca, Grp Collegato Parma, I-43124 Parma - Italy
[5] Univ Jena, Theoret Phys Inst, D-07743 Jena - Germany
[6] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Santo Andre, SP - Brazil
[7] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 - USA
Número total de Afiliações: 7
Tipo de documento: Artigo Científico
Fonte: Physical Review D; v. 97, n. 6 MAR 5 2018.
Citações Web of Science: 8
Resumo

We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes similar to 0.1. They start at a gravitational-wave frequency of similar to 392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events. (AU)

Processo FAPESP: 17/02139-7 - Fusões genéricas de sistemas binários de estrelas de nêutrons
Beneficiário:Maximiliano Ujevic Tonino
Linha de fomento: Bolsas no Exterior - Pesquisa