Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A general heuristic for two-dimensional nesting problems with limited-size containers

Texto completo
Autor(es):
Mundim, Leandro R. [1] ; Andretta, Marina [1] ; Carravilla, Maria Antonia [2] ; Oliveira, Jose Fernando [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Carlos, SP - Brazil
[2] Univ Porto, INESC TEC, Fac Engn, Porto - Portugal
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH; v. 56, n. 1-2, SI, p. 709-732, 2018.
Citações Web of Science: 1
Resumo

Cutting raw-material into smaller parts is a fundamental phase of many production processes. These operations originate raw-material waste that can be minimised. These problems have a strong economic and ecological impact and their proper solving is essential to many sectors of the economy, such as the textile, footwear, automotive and shipbuilding industries, to mention only a few. Two-dimensional (2D) nesting problems, in particular, deal with the cutting of irregularly shaped pieces from a set of larger containers, so that either the waste is minimised or the value of the pieces actually cut from the containers is maximised. Despite the real-world practical relevance of these problems, very few approaches have been proposed capable of dealing with concrete characteristics that arise in practice. In this paper, we propose a new general heuristic (H4NP) for all 2D nesting problems with limited-size containers: the Placement problem, the Knapsack problem, the Cutting Stock problem, and the Bin Packing problem. Extensive computational experiments were run on a total of 1100 instances. H4NP obtained equal or better solutions for 73% of the instances for which there were previous results against which to compare, and new benchmarks are proposed. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 16/01860-1 - Problemas de corte, empacotamento, dimensionamento de lotes, programação da produção, roteamento, localização e suas integrações em contextos industriais e logísticos
Beneficiário:Reinaldo Morabito Neto
Linha de fomento: Auxílio à Pesquisa - Temático