Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Lindblad dynamics of the quantum spherical model

Texto completo
Autor(es):
Wald, Sascha [1, 2] ; Landi, Gabriel T. [3] ; Henkel, Malte [1, 4, 5]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Lorraine Nancy, Inst Jean Lamour, CNRS, Dept Phys Matiere Mat, Grp Phys Stat, UMR 7198, F-54506 Vandoeuvre LesNancy - France
[2] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste - Italy
[3] Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05314970 Sao Paulo, SP - Brazil
[4] Swiss Fed Inst Technol, Inst Bausto, Rechnergestutzte Phys Werkstoffe, Stefano Franscini Pl 3, CH-8093 Zurich - Switzerland
[5] Univ Lisbon, Ctr Fis Teor & Computac, P-1749016 Lisbon - Portugal
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT; JAN 2018.
Citações Web of Science: 5
Resumo

The purely relaxational non-equilibrium dynamics of the quantum spherical model as described through a Lindblad equation is analysed. It is shown that the phenomenological requirements of reproducing the exact quantum equilibrium state as stationary solution and the associated classical Langevin equation in the classical limit g -> 0 fix the form of the Lindblad dissipators, up to an overall time-scale. In the semi-classical limit, the models' behaviour becomes effectively the one of the classical analogue, with a dynamical exponent z = 2 indicating diffusive transport, and an effective temperature T-eff., renormalised by the quantum coupling g. A different behaviour is found for a quantum quench, at zero temperature, deep into the ordered phase g << g(c)(d), for d > 1 dimensions. Only for d = 2 dimensions, a simple scaling behaviour holds true, with a dynamical exponent z = 1 indicating ballistic transport, while for dimensions d not equal 2, logarithmic corrections to scaling arise. The spin-spin correlator, the growing length scale and the time-dependent susceptibility show the existence of several logarithmically different length scales. (AU)

Processo FAPESP: 16/08721-7 - Modelagem estocástica de sistemas quânticos fora do equilíbrio
Beneficiário:Gabriel Teixeira Landi
Linha de fomento: Auxílio à Pesquisa - Regular