Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Using Satellite Error Modeling to Improve GPM-Level 3 Rainfall Estimates over the Central Amazon Region

Texto completo
Autor(es):
Oliveira, Romulo [1, 2, 3] ; Maggioni, Viviana [2] ; Vila, Daniel [1] ; Porcacchia, Leonardo [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] INPE, CPTEC, BR-12227010 Sao Jose Dos Campos, SP - Brazil
[2] George Mason Univ, Sid & Reva Dewberry Dept Civil Environm & Infrast, Fairfax, VA 22030 - USA
[3] CNRS, GET, F-31055 Toulouse - France
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: REMOTE SENSING; v. 10, n. 2 FEB 2018.
Citações Web of Science: 6
Resumo

This study aims to assess the characteristics and uncertainty of Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) Level 3 rainfall estimates and to improve those estimates using an error model over the central Amazon region. The S-band Amazon Protection National System (SIPAM) radar is used as reference and the Precipitation Uncertainties for Satellite Hydrology (PUSH) framework is adopted to characterize uncertainties associated with the satellite precipitation product. PUSH is calibrated and validated for the study region and takes into account factors like seasonality and surface type (i.e., land and river). Results demonstrated that the PUSH model is suitable for characterizing errors in the IMERG algorithm when compared with S-band SIPAM radar estimates. PUSH could efficiently predict the satellite rainfall error distribution in terms of spatial and intensity distribution. However, an underestimation (overestimation) of light satellite rain rates was observed during the dry (wet) period, mainly over rivers. Although the estimated error showed a lower standard deviation than the observed error, the correlation between satellite and radar rainfall was high and the systematic error was well captured along the Negro, Solimoes, and Amazon rivers, especially during the wet season. (AU)

Processo FAPESP: 09/15235-8 - Processos de nuvens associados aos principais sistemas precipitantes no Brasil: uma contribuição à modelagem da escala de nuvens e ao GPM (Medida Global de Precipitação)
Beneficiário:Luiz Augusto Toledo Machado
Linha de fomento: Auxílio à Pesquisa - Temático