Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the validity of the use of a localized approximation for helical beams. II. Numerical aspects

Texto completo
Autor(es):
Ambrosio, Leonardo Andre [1] ; Gouesbet, Gerard [2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP - Brazil
[2] INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray - France
[3] Univ Rouen, CNRS, Normandie Univ, CORIA UMR 6614, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray - France
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER; v. 215, p. 41-50, AUG 2018.
Citações Web of Science: 5
Resumo

The description of an electromagnetic beam for use in light scattering theories may be carried out by using an expansion over vector spherical wave functions with expansion coefficients expressed in terms of Beam Shape Coefficients (BSCs). A celebrated method to evaluate these BSCs has been the use of a localized approximation. In Part I of the present work devoted to formal aspects of the issue, we have demonstrated, using what is known as the N-procedure, that the use of a localized approximation is likely to be of limited validity in the case of helical beams exhibiting a nonzero topological charge. In the present Part II devoted to numerical aspects, we confirm the previous statement by relying on the comparison between exact and localized values of the BSCs in the case of Laguerre-Gauss beams. As a by-product we shall exhibit new examples of helical beams which are nonvortex beams. (C) 2018 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 17/10445-0 - Feixes de luz não difrativos microestruturados para micromanipulação óptica
Beneficiário:Leonardo Andre Ambrosio
Linha de fomento: Auxílio à Pesquisa - Regular