Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Lindblad-Floquet description of finite-time quantum heat engines

Texto completo
Autor(es):
Scopa, Stefano [1] ; Landi, Gabriel T. [2] ; Karevski, Dragi [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Lorraine, CNRS, Lab Phys & Chim Theor, UMR 7019, BP 239, F-54506 Vandoeuvre Les Nancy - France
[2] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Physical Review A; v. 97, n. 6 JUN 20 2018.
Citações Web of Science: 5
Resumo

The operation of autonomous finite-time quantum heat engines relies on the existence of a stable limit cycle in which the dynamics becomes periodic. The two main questions that naturally arise are therefore whether such a limit cycle will eventually be reached and, once it has, what the state of the system is within the limit cycle. In this paper we show that the application of Floquet's theory to Lindblad dynamics offers clear answers to both questions. By moving to a generalized rotating frame, we show that it is possible to identify a single object, the Floquet Liouvillian, which encompasses all operating properties of the engine. First, its spectrum dictates the convergence to a limit cycle. Second, the state within the limit cycle is precisely its zero eigenstate, therefore reducing the problem to that of determining the steady state of a time-independent master equation. To illustrate the usefulness of this theory, we apply it to a harmonic oscillator subject to a time-periodic work protocol and time-periodic dissipation, an open-system generalization of the Ermakov-Lewis theory. The use of this theory to implement a finite-time Carnot engine subject to continuous frequency modulations is also discussed. (AU)

Processo FAPESP: 16/08721-7 - Modelagem estocástica de sistemas quânticos fora do equilíbrio
Beneficiário:Gabriel Teixeira Landi
Linha de fomento: Auxílio à Pesquisa - Regular