Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Stability Result for Periodic Solutions of Nonmonotonic Smooth Negative Feedback Systems

Texto completo
Autor(es):
Poignard, Camille [1] ; Chaves, Madalena [2] ; Gouze, Jean-Luc [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Paulo - Brazil
[2] UPMC Univ Paris 06, Univ Cote Azur, INRIA, CNRS, INRA, Biocore Team, Sophia Antipolis - France
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS; v. 17, n. 2, p. 1091-1116, 2018.
Citações Web of Science: 0
Resumo

In high dimension, stability and uniqueness of periodic orbits in nonlinear smooth systems are difficult properties to establish in general. In a previous work, we proved the existence of periodic oscillations inscribed in an invariant torus for a class of negative feedback systems in R-n, where the regulation functions defining these systems are supposed to be nonlinear (and possibly nonmonotonic) in a small window and constant outside this window. Here, under some symmetry assumptions on the parameters of these models, we establish uniqueness and stability of the periodic orbit inside this invariant torus. The method used is based on the analysis of the spectrum of the monodromy matrix associated with the periodic orbit considered. Under the same assumptions, an approximation of the period of the orbit in terms of the parameters is also provided, and all results are illustrated with several examples from circadian rhythms. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs