Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A model selection approach for multiple sequence segmentation and dimensionality reduction

Texto completo
Autor(es):
Castro, Bruno M. [1] ; Lemes, Renan B. [2] ; Cesar, Jonatas [2] ; Hunemeier, Tabita [2] ; Leonardi, Florencia [3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Fed Rio Grande do Norte, Dept Estat, Natal, RN - Brazil
[2] Univ Sao Paulo, Inst Biociencias, Sao Paulo - Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF MULTIVARIATE ANALYSIS; v. 167, p. 319-330, SEP 2018.
Citações Web of Science: 0
Resumo

In this paper we consider the problem of segmenting n aligned random sequences of equal length m into a finite number of independent blocks. We propose a penalized maximum likelihood criterion to infer simultaneously the number of points of independence as well as the position of each point. We show how to compute exactly the estimator by means of a dynamic programming algorithm with time complexity O(m(2)n). We also propose another method, called hierarchical algorithm, that provides an approximation to the estimator when the sample size increases and runs in time O[m In(m)n]. Our main theoretical results are the strong consistency of both estimators when the sample size n grows to infinity. We illustrate the convergence of these algorithms through some simulation examples and we apply the method to identify recombination hotspots in real SNPs data. (C) 2018 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 13/07699-0 - Centro de Pesquisa, Inovação e Difusão em Neuromatemática - NeuroMat
Beneficiário:Jefferson Antonio Galves
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 16/17394-0 - Seleção de estrutura para processos estocásticos em altas dimensoões
Beneficiário:Florencia Graciela Leonardi
Linha de fomento: Auxílio à Pesquisa - Regular