Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations

Texto completo
Autor(es):
Cherri, Luiz H. [1, 2] ; Cherri, Adriana C. [3] ; Soler, Edilaine M. [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP - Brazil
[2] ODM, Rua Alfredo Lopes 1717, Sala E10, BR-13560460 Sao Carlos, SP - Brazil
[3] Univ Estadual Paulista, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Global Optimization; v. 72, n. 1, SI, p. 89-107, SEP 2018.
Citações Web of Science: 1
Resumo

The irregular strip packing problem consists of cutting a set of convex and non-convex two-dimensional polygonal pieces from a board with a fixed height and infinite length. Owing to the importance of this problem, a large number of mathematical models and solution methods have been proposed. However, only few papers consider that the pieces can be rotated at any angle in order to reduce the board length used. Furthermore, the solution methods proposed in the literature are mostly heuristic. This paper proposes a novel mixed integer quadratically-constrained programming model for the irregular strip packing problem considering continuous rotations for the pieces. In the model, the pieces are allocated on the board using a reference point and its allocation is given by the translation and rotation of the pieces. To reduce the number of symmetric solutions for the model, sets of symmetry-breaking constraints are proposed. Computational experiments were performed on the model with and without symmetry-breaking constraints, showing that symmetry elimination improves the quality of solutions found by the solution methods. Tests were performed with instances from the literature. For two instances, it was possible to compare the solutions with a previous model from the literature and show that the proposed model is able to obtain numerically accurate solutions in competitive computational times. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 15/24987-4 - Corte de peças irregulares: métodos e aplicações
Beneficiário:Luiz Henrique Cherri
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 15/03066-8 - Aplicações do problema de corte unidimensional com sobras aproveitáveis e problema de corte bidimensional
Beneficiário:Adriana Cristina Cherri
Linha de fomento: Auxílio à Pesquisa - Regular