Aproximantes de Padé e a série perturbativa da QCD em decaimentos tau em hádrons
- Auxílios pontuais (curta duração)
Texto completo | |
Autor(es): |
Número total de Autores: 3
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Autonoma Barcelona, Dept Fis, Grp Fis Teor, Campus UAB, E-08193 Bellaterra, Barcelona - Spain
[3] BIST, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona - Spain
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of High Energy Physics; n. 8 AUG 14 2018. |
Citações Web of Science: | 3 |
Resumo | |
Perturbative QCD corrections to hadronic tau decays and e(+)e(-) annihilation into hadrons below charm are obtained from the Adler function, which at present is known in the chiral limit to five-loop accuracy. Extractions of the strong coupling, alpha(s), from these processes suffer from an ambiguity related to the treatment of unknown higher orders in the perturbative series. In this work, we exploit the method of Pade approximants and its convergence theorems to extract information about higher-order corrections to the Adler function in a systematic way. First, the method is tested in the large-beta(0) limit of QCD, where the perturbative series is known to all orders. We devise strategies to accelerate the convergence of the method employing renormalization scheme variations and the so-called D-log Pade approximants. The success of these strategies can be understood in terms of the analytic structure of the series in the Borel plane. We then apply the method to full QCD and obtain reliable model-independent predictions for the higher-order coefficients of the Adler function. For the six-, seven-, and eight-loop coefficients we find c(5,1) = 277 +/- 51, c(6,1) = 3460 +/- 690, and c(7)(,1) = (2.02 +/- 0.72) x10(4), respectively, with errors to be understood as lower and upper bounds. Our model-independent reconstruction of the perturbative QCD corrections to the tau hadronic width strongly favours the use of fixed-order perturbation theory (FOPT) for the renormalization-scale setting. (AU) | |
Processo FAPESP: | 16/01341-4 - Aproximantes de Padé e a série perturbativa da QCD em decaimentos tau em hádrons |
Beneficiário: | Fabio Henrique Oliani |
Linha de fomento: | Bolsas no Brasil - Mestrado |
Processo FAPESP: | 15/20689-9 - Determinação precisa de parâmetros fundamentais da QCD |
Beneficiário: | Diogo Rodrigues Boito |
Linha de fomento: | Auxílio à Pesquisa - Apoio a Jovens Pesquisadores |