Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

LIQUID-LIQUID EQUILIBRIA FOR SYSTEMS CONTAINING FATTY ACID ETHYL ESTERS, ETHANOL AND GLYCEROL AT 333.15 AND 343.15 K: EXPERIMENTAL DATA, THERMODYNAMIC AND ARTIFICIAL NEURAL NETWORK MODELING

Texto completo
Autor(es):
Cavalcanti, Rodrigo N. [1] ; Oliveira, Mariana B. [2] ; Meirelles, Antonio J. A. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Fac Food Engn, Dept Food Engn, UNICAMP, ExTrAE Lab Extract Appl Thermodynam & Equilibria, BR-13083862 Campinas, SP - Brazil
[2] Univ Aveiro, Chem Dept, CICECO, P-3810193 Aveiro - Portugal
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Brazilian Journal of Chemical Engineering; v. 35, n. 2, p. 819-834, APR-JUN 2018.
Citações Web of Science: 0
Resumo

In this study, the liquid-liquid equilibrium (LLE) data of systems containing ethyl linoleate/oleate/palmitate/laurate, ethanol and glycerol at temperatures ranging from 323.15 to 353.15 K were used to evaluate the performance of the NRTL, UNIFAC, Cubic-Plus-Association Equation of State (CPA EoS), and artificial neural network (ANN) models. The systems evaluated correspond to the most important components formed at the end of the ethanolysis reaction of soybean, palm and coconut oils. The temperature range selected is very important for heterogeneous catalysts, especially for high-pressure systems. The accuracy of the models was evaluated by average global deviation. UNIFAC, UNIFAC-LLE and CPA EoS models showed lower accuracy with deviations of 10.1, 8.01 and 5.95%, respectively. In spite of this predictive limitation, these models show high extrapolation capability for the description of LLE behavior when few experimental data are available in the literature. The ANN model shows the best agreement between experimental and predicted data with an average deviation of 1.12%. In this regard, ANN is offered in this work as an alternative to equations of state and activity coefficient models to be used in a more reliable and less cumbersome way for process simulators of biodiesel production and separation equipment design. (AU)

Processo FAPESP: 14/21252-0 - Equilíbrio e processos de produção de biocombustíveis e bioprodutos
Beneficiário:Antonio José de Almeida Meirelles
Linha de fomento: Auxílio à Pesquisa - Temático