Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Robustifying sum-product networks

Texto completo
Autor(es):
Maua, Denis Deratani [1] ; Conaty, Diarmaid [2] ; Cozman, Fabio Gagliardi [3] ; Poppenhaeger, Katja [4] ; de Campos, Cassio Polpo [2, 5]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Stat, Sao Paulo - Brazil
[2] Queens Univ Belfast, Ctr Data Sci & Scalable Comp, Belfast, Antrim - North Ireland
[3] Univ Sao Paulo, Escola Politecn, Sao Paulo - Brazil
[4] Queens Univ Belfast, Astrophys Res Ctr, Belfast, Antrim - North Ireland
[5] Univ Utrecht, Dept Informat & Comp Sci, Utrecht - Netherlands
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING; v. 101, n. SI, p. 163-180, OCT 2018.
Citações Web of Science: 0
Resumo

Sum-product networks are a relatively new and increasingly popular family of probabilistic graphical models that allow for marginal inference with polynomial effort. They have been shown to achieve state-of-the-art performance in several tasks involving density estimation. Sum-product networks are typically learned from data; as such, inferences produced with them are prone to be unreliable and overconfident when data is scarce. In this work, we develop the credal sum-product networks, a generalization of sum-product networks that uses set-valued parameters. We present algorithms and complexity results for common inference tasks with this class of models. We also present an approach for assessing the reliability of classifications made with sum-product networks. We apply this approach on benchmark classification tasks as well as a new application in predicting the age of stars. Our experiments show that the use of credal sum-product networks allow us to distinguish between reliable and unreliable classifications with higher accuracy than standard approaches based on (precise) probability values. (C) 2018 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 16/01055-1 - Aprendizagem de modelos probabilísticos tratáveis e seu uso na classificação multirrótulo
Beneficiário:Denis Deratani Mauá
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/18841-0 - Algoritmos para inferência e aprendizado de programas lógicos probabilísticos
Beneficiário:Fabio Gagliardi Cozman
Linha de fomento: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE