Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Influencers identification in complex networks through reaction-diffusion dynamics

Texto completo
Iannelli, Flavio [1] ; Mariani, Manuel S. [2, 3, 4] ; Sokolov, Igor M. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin - Germany
[2] Univ Fribourg, Dept Phys, CH-1700 Fribourg - Switzerland
[3] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan - Peoples R China
[4] Univ Zurich, URPP Social Networks, CH-8050 Zurich - Switzerland
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Physical Review E; v. 98, n. 6 DEC 3 2018.
Citações Web of Science: 3

A pivotal idea in network science, marketing research, and innovation diffusion theories is that a small group of nodes-called influencers-have the largest impact on social contagion and epidemic processes in networks. Despite the long-standing interest in the influencers identification problem in socioeconomic and biological networks, there is not yet agreement on which is the best identification strategy. State-of-the-art strategies are typically based either on heuristic centrality measures or on analytic arguments that only hold for specific network topologies or peculiar dynamical regimes. Here, we leverage the recently introduced random-walk effective distance-a topological metric that estimates almost perfectly the arrival time of diffusive spreading processes on networks-to introduce a centrality metric which quantifies how close a node is to the other nodes. We show that the new centrality metric significantly outperforms state-of-the-art metrics in detecting the influencers for global contagion processes. Our findings reveal the essential role of the network effective distance for the influencers identification and lead us closer to the optimal solution of the problem. (AU)

Processo FAPESP: 15/50122-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Linha de fomento: Auxílio à Pesquisa - Temático