Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

INVARIANCE PRINCIPLE AND RIGIDITY OF HIGH ENTROPY MEASURES

Texto completo
Autor(es):
Tahzibi, Ali [1] ; Yang, Jiagang [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, ICMC, Dept Matemat, BR-13566590 Sao Carlos, SP - Brazil
[2] Univ Fed Fluminense, Inst Matemat & Estat, Dept Geometria, BR-24020140 Niteroi, RJ - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY; v. 371, n. 2, p. 1231-1251, JAN 15 2019.
Citações Web of Science: 4
Resumo

A deep analysis of the Lyapunov exponents for stationary sequence of matrices going back to Furstenberg, for more general linear cocycles by Ledrappier, and generalized to the context of non-linear cocycles by Avila and Viana, gives an invariance principle for invariant measures with vanishing central exponents. In this paper, we give a new criterium formulated in terms of entropy for the invariance principle and, in particular, obtain a simpler proof for some of the known invariance principle results. As a byproduct, we study ergodic measures of partially hyperbolic diffeomorphisms whose center foliation is one-dimensional and forms a circle bundle. We show that for any such C-2 diffeomorphism which is accessible, weak hyperbolicity of ergodic measures of high entropy implies that the system itself is of rotation type. (AU)

Processo FAPESP: 14/23485-2 - Difeomorfismos parcialmente hiperbólicos: expoentes de Lyapunov e estados de equilíbrio
Beneficiário:Ali Tahzibi
Linha de fomento: Bolsas no Exterior - Pesquisa