Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the approximate solutions of augmented subproblems within sequential methods for nonlinear programming

Texto completo
Autor(es):
Ribeiro, Ademir A. [1] ; Sachine, Mael [1] ; Santos, Sandra A. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Parana, Curitiba, Parana - Brazil
[2] Univ Estadual Campinas, IMECC UNICAMP, Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: COMPUTATIONAL & APPLIED MATHEMATICS; v. 37, n. 5, p. 6601-6618, NOV 2018.
Citações Web of Science: 0
Resumo

Within the context of sequential methods for solving general nonlinear programming problems, and on the grounds of a previous work of the same authors, this study deals with the theoretical reasoning behind handling the original subproblems by an augmentation strategy. We do not assume feasibility of the original problem, nor the fulfillment of any constraint qualification. The previous analysis is extended along two directions. First and foremost, the exact nature of the stationary points previously considered is alleviated under an approximate stationary perspective. Second, the current analysis has been developed using general vector norms. Therefore, despite the similarities of the obtained results with those of the prior study, the present ones have been obtained under less restrictive hypotheses, and with a more involved examination. As before, we are not concerned with the sequential method itself, nor with computational results. We focus on the features of the original problem that can be inferred from the properties of the solution of the augmented problem, with the solutions being now analyzed in an approximate sense. Examples illustrating the obtained results are included. (AU)

Processo FAPESP: 13/05475-7 - Métodos computacionais de otimização
Beneficiário:Sandra Augusta Santos
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs