Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Multifractality in random networks with power-law decaying bond strengths

Texto completo
Autor(es):
Vega-Oliveros, Didier A. [1, 2] ; Mendez-Bermulez, J. A. [3] ; Rodrigues, Francisco A. [4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, BR-14040901 Ribeirao Preto, SP - Brazil
[2] Indiana Univ, Sch Informat Comp & Engn, Bloomington, IN 47408 - USA
[3] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570 - Mexico
[4] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat Aplicada & Estat, Campus Sao Carlos, CP 668, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Physical Review E; v. 99, n. 4 APR 10 2019.
Citações Web of Science: 1
Resumo

In this paper we demonstrate numerically that random networks whose adjacency matrices A are represented by a diluted version of the power-law banded random matrix (PBRM) model have multifractal eigenfunctions. The PBRM model describes one-dimensional samples with random long-range bonds. The bond strengths of the model, which decay as a power-law, are tuned by the parameter mu as A(mm) proportional to vertical bar m - nVERBAR;(-mu ); while the sparsity is driven by the average network connectivity alpha: for alpha = 0 the vertices in the network are isolated and for alpha = 1 the network is fully connected and the PBRM model is recovered. Though it is known that the PBRM model has multifractal eigenfunctions at the critical value mu = mu(c) = 1, we clearly show {[}from the scaling of the relative fluctuation of the participation number I-2 as well as the scaling of the probability distribution functions P(ln I-2)] the existence of the critical value mu(c) (math) mu(c) (alpha) for alpha < 1. Moreover, we characterize the multifractality of the eigenfunctions of our random network model by the use of the corresponding multifractal dimensions D-q, that we compute from the finite network-size scaling of the typical eigenfunction participation numbers exp < ln I-q >. (AU)

Processo FAPESP: 13/26416-9 - Modelagem de processos dinâmicos em redes complexas
Beneficiário:Francisco Aparecido Rodrigues
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 16/23698-1 - Processos dinâmicos em aprendizado de máquina baseados em redes complexas
Beneficiário:Didier Augusto Vega Oliveros
Linha de fomento: Bolsas no Brasil - Pós-Doutorado