Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

PARTIAL HYPOELLIPTICITY FOR A CLASS OF ABSTRACT DIFFERENTIAL COMPLEXES ON BANACH SPACE SCALES

Texto completo
Autor(es):
Aragao-Costa, E. R.
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: ANNALS OF FUNCTIONAL ANALYSIS; v. 10, n. 2, p. 262-276, MAY 2019.
Citações Web of Science: 0
Resumo

In this article we give sufficient conditions for the hypoellipticity in the first level of the abstract complex generated by the differential operators L-j = partial derivative/partial derivative t(j) + partial derivative phi/partial derivative t(j) (t, A)A, j = 1, 2, ..., n, where A : D(A) subset of X -> X is a sectorial at operator in a Banach space X, with R sigma(A) > 0, and phi = phi(t, A) is a series of nonnegative powers of A(-1) with coefficients in C-infinity(Omega), Omega being an open set of R-n with n is an element of N arbitrary. Analogous complexes have been studied by several authors in this field, but only in the case n = 1 and with X a Hilbert space. Therefore, in this article, we provide an improvement of these results by treating the question in a more general setup. First, we provide sufficient conditions to get the partial hypoellipticity for that complex in the elliptic region. Second, we study the particular operator A = 1 - Delta : W-2,W-p(R-N) subset of L-P(R-N) -> L-p(R-N), for 1 <= p <= 2, which will allow us to solve the problem of points which do not belong to the elliptic region. (AU)

Processo FAPESP: 14/02899-3 - Resolubilidade global para complexos diferenciais e recíproca para o teorema de existência de função de Lyapunov não autônoma para processos de evolução de tipo gradiente
Beneficiário:Éder Ritis Aragão Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular