Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites

Texto completo
Autor(es):
Mostrar menos -
Ugwuja, Chidinma G. [1, 2] ; Adelowo, Olawale O. [3] ; Ogunlaja, Aemere [1, 4] ; Omorogie, Martins O. [1, 2] ; Olukanni, Olumide D. [1, 2] ; Ikhimiukor, Odion O. [3] ; Iermak, Ievgeniia [5] ; Kolawole, Gabriel A. [1, 2, 6] ; Guenter, Christina [7] ; Taubert, Andreas [8] ; Bodede, Olusola [9] ; Moodley, Roshila [9] ; Inada, Natalia M. [5] ; de Camargo, Andrea S. S. [5] ; Unuabonah, Emmanuel I. [1, 2, 5]
Número total de Autores: 15
Afiliação do(s) autor(es):
[1] Redeemers Univ, African Ctr Excellence Water & Environm Res ACEWA, PMB 230, Ede 220005, Osun State - Nigeria
[2] Redeemers Univ, Dept Chem Sci, PMB 230, Ede 220005, Osun State - Nigeria
[3] Univ Ibadan, Dept Microbiol, PMB 5116, Ibadan 200284, Oyo State - Nigeria
[4] Redeemers Univ, Dept Biol Sci, PMB 230, Ede 220005, Osun State - Nigeria
[5] Univ Sao Paulo, Sao Carlos Inst Phys, Ave Trabalhador Saocarlense 400, BR-13566590 Sao Carlos, SP - Brazil
[6] Univ Zululand, Dept Chem, ZA-3886 Kwa Dlangezwa - South Africa
[7] Univ Potsdam, Inst Geosci, D-14476 Golm - Germany
[8] Univ Potsdam, Inst Chem, D-14476 Golm - Germany
[9] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus, ZA-3630 Durban - South Africa
Número total de Afiliações: 9
Tipo de documento: Artigo Científico
Fonte: ACS APPLIED MATERIALS & INTERFACES; v. 11, n. 28, p. 25483-25494, JUL 17 2019.
Citações Web of Science: 1
Resumo

This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Arhammar, C.; Jamstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, therrnogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 x 10(7) cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries. (AU)

Processo FAPESP: 17/26803-3 - Reconstrução de materiais lignocelulósicos em líquidos iônicos para a preparação de novos materiais híbridos porosos (MHPs) para a desinfecção de água
Beneficiário:Andrea Simone Stucchi de Camargo Alvarez Bernardez
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional
Processo FAPESP: 13/07793-6 - CEPIV - Centro de Ensino, Pesquisa e Inovação em Vidros
Beneficiário:Edgar Dutra Zanotto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs