Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams

Texto completo
Autor(es):
Gouesbet, Gerard [1, 2] ; Ambrosio, Leonardo Andre [3] ; Lock, James A. [4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Normandie Univ, CNRS Univ, CORIA UMR 6614, F-76800 Caen - France
[2] INSA Rouen Campus Univ Madrillet St Etienne Du Ro, F-76800 St Etienne Du Rouvray - France
[3] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Paulo, SP - Brazil
[4] Cleveland State Univ, Dept Phys, Cleveland, OH 44115 - USA
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER; v. 242, FEB 2020.
Citações Web of Science: 0
Resumo

When dealing with light scattering theories such as the T-matrix methods for structured laser beams, e.g. Generalized Lorenz-Mie Theory (GLMT) or the Extended Boundary Condition Method (EBCM), EM fields are expanded over a set of Vector Spherical Wave Functions (VSWFs) involving spherical Bessel functions, with expansion coefficients expressed in terms of Beam Shape Coefficients (BSCs). Although spherical Bessel functions are orthogonal over the range (-infinity, +infinity), the GLMT may be expressed using a non-orthogonal set of spherical Bessel functions defined over (0, +infinity), allowing one to generate an infinite number of quadratures for evaluating the BSCs. This paper points out the difference between orthogonal and non-orthogonal spherical Bessel functions, establishes the infinite number of quadratures and discusses its properties. (C) 2019 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 17/10445-0 - Feixes de luz não difrativos microestruturados para micromanipulação óptica
Beneficiário:Leonardo Andre Ambrosio
Modalidade de apoio: Auxílio à Pesquisa - Regular