Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A set of basis functions to improve numerical calculation of Mie scattering in the Chandrasekhar-Sekera representation

Texto completo
Autor(es):
Martinez, Alexandre Souto [1, 2] ; Alcaras, Jose Renato [1] ; Arruda, Tiago Jose [3, 4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, FFCLRP, Ribeirao Preto - Brazil
[2] INCT SC, Rio De Janeiro - Brazil
[3] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP - Brazil
[4] Univ Fed Alfenas UNIFAL MG, Inst Ciencias Exatas ICEx, Alfenas - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: WAVES IN RANDOM AND COMPLEX MEDIA; MAR 2020.
Citações Web of Science: 0
Resumo

Numerical calculations of light propagation in random media demand the multiply scattered Stokes intensities to be written in a common fixed reference. In multiple-scattering schemes, a particularly useful way to perform automatically these basis transformations between reference frames is to write the scattered intensities in the Chandrasekhar-Sekera representation. The main drawback with this representation is the necessity of numerical tests to deal with the limiting situations of the small particle (Rayleigh) and forward/backward scattering. Here, a new set of basis functions is presented to describe the scattering of light by spherical particles (Mie scattering) in the Chandrasekhar-Sekera representation. These basis functions can be implemented in a new algorithm to calculate the Mie scattering amplitudes, which leads straightforwardly to all the scattering quantities. In contrast to the traditional implementation, this set of basis functions implies to natural numerical convergence to the above mentioned limiting cases, which are thoroughly discussed. (AU)

Processo FAPESP: 15/21194-3 - Interação entre átomos e metamateriais: efeito Purcell e teoria de meios efetivos
Beneficiário:Tiago José Arruda
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 18/21694-4 - Metamateriais acústicos: campos internos e teoria de espalhamento
Beneficiário:José Renato Alcarás
Linha de fomento: Bolsas no Brasil - Doutorado