Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Irony detection in Twitter with imbalanced class distributions

Texto completo
Autor(es):
Farias, Delia Irazu Hernandez [1] ; Prali, Ronaldo [2] ; Herrera, Francisco [3] ; Rosso, Paolo [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Guanajuato, Div Ciencias & Ingn, Campus Leon, Lomas Bosque 103, Guanajuato 37150 - Mexico
[2] Univ Fed ABC, Santo Andre, SP - Brazil
[3] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada - Spain
[4] Univ Politecn Valencia, Valencia - Spain
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF INTELLIGENT & FUZZY SYSTEMS; v. 39, n. 2, p. 2147-2163, 2020.
Citações Web of Science: 0
Resumo

Irony detection is a not trivial problem and can help to improve natural language processing tasks as sentiment analysis. When dealing with social media data in real scenarios, an important issue to address is data skew, i.e. the imbalance between available ironic and non-ironic samples available. In this work, the main objective is to address irony detection in Twitter considering various degrees of imbalanced distribution between classes. We rely on the emotIDM irony detection model. We evaluated it against both benchmark corpora and skewed Twitter datasets collected to simulate arealistic distribution of ironic tweets. We carry out a set of classification experiments aimed to determine the impact of class imbalance on detecting irony, and we evaluate the performance of irony detection when different scenarios are considered. We experiment with a set of classifiers applying class imbalance techniques to compensate class distribution. Our results indicate that by using such techniques, it is possible to improve the performance of irony detection in imbalanced class scenarios. (AU)

Processo FAPESP: 15/20606-6 - Rótulos imprecisos em Aprendizado de Máquina: Medidas de avaliação e algoritmos de aprendizado de máquina
Beneficiário:Ronaldo Cristiano Prati
Linha de fomento: Bolsas no Exterior - Pesquisa