Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Improved localization in a corn crop row using a rotated laser rangefinder for three-dimensional data acquisition

Texto completo
Autor(es):
Gasparino, Mateus V. [1] ; Higuti, Vitor A. H. [2] ; Velasquez, Andres E. B. [1] ; Becker, Marcelo [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Illinois, Dept Agr & Biol Engn, Champaign, IL 61820 - USA
[2] Univ Sao Paulo, Dept Mech Engn, Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering; v. 42, n. 11 OCT 21 2020.
Citações Web of Science: 0
Resumo

Small robotic vehicles have been navigating agricultural fields in the pursuit of new possibilities to increase agricultural production and to meet the increasing food and energetic demands. However, a perception system with reliable awareness of the surroundings remains a challenge to achieve autonomous navigation. Camera and single-layer laser scanners have been the primary sources of information, yet the first suffers from outdoor light sensibility and both from occlusion by leaves. This paper describes a three-dimensional system acquisition for corn crops. The sensing core is a single-layer UTM30-LX laser scanner rotating around its axis, while an inertial sensor provides angular measurements. With the rotation, multiple layers are used to compose a 3D point cloud, which is represented by a two-dimensional occupancy grid. Each cell is filled according to the number of readings, and their weights derive from two procedures: firstly, a mask enhances vertical entities (stalks); secondly, two Gaussian functions on the expected position of the immediate neighboring rows weaken readings in the middle of the lane and farther rows. The resulting occupancy grid allows the representation of the cornrows by virtual walls, which are used as references to a wall follower algorithm. According to experimental results, the virtual walls are segmented with reduced influence from straying leaves and sparse weeds when compared to the segmentation done with single-layer laser scanner data. Indeed, 64.02% of 3D outputs are within 0.05 m limit error from expected lane width, while only 11.63% of single-layer laser data are within same limit. (AU)

Processo FAPESP: 16/09970-0 - Rover com suspensão passiva para monitoramento minimamente invasivo de áreas agrícolas
Beneficiário:Vitor Akihiro Hisano Higuti
Linha de fomento: Bolsas no Brasil - Mestrado
Processo FAPESP: 17/10401-3 - Estrutura de equilíbrio automático para rover agrícola de monitoramento minimamente invasivo
Beneficiário:Mateus Valverde Gasparino
Linha de fomento: Bolsas no Brasil - Mestrado