Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Identifying traffic conditions from non-traffic related sources

Texto completo
Autor(es):
Chamby-Diaz, Jorge C. [1] ; Estevam, Rhuam Sena [1] ; Bazzan, Ana L. C. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Rio Grande do Sul UFRGS, Inst Informat, BR-91501970 Porto Alegre, RS - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS; NOV 2020.
Citações Web of Science: 0
Resumo

Mobile devices and Internet-based applications are producing a significant volume of data that may be used to, at least partially, replace some of the hardware necessary to sense traffic systems. However, there are several issues related to such an agenda: data are heterogeneous, unstructured, may appear in natural language, are normally not geolocated, and there are balancing issues related to the use of such data. This means that all these issues must be treated via software, especially using machine learning techniques. In this paper, a methodology is proposed, which is based on: extraction and processing of relevant information from social media; determination of its context; explanation of transportation related phenomena in terms of their contexts; and prediction of traffic conditions. The methodology was applied to a case study using data from the city of Porto Alegre, Brazil. Results shown that it was possible to associate traffic-related and context data to predict the traffic conditions that were originally reported in a Twitter account. (AU)

Processo FAPESP: 15/24423-3 - 2 UEI internet 2.0 e embarcada em veículos como fontes heterogêneas de dados em cidades inteligentes
Beneficiário:Ana Lúcia Cetertich Bazzan
Linha de fomento: Auxílio à Pesquisa - Regular