Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Optimal burn-in policy based on a set of cutoff points using mixture inverse Gaussian degradation process and copulas

Texto completo
Morita, Lia H. M. [1] ; Tomazella, Vera L. [2] ; Ferreira, Paulo H. [3] ; Ramos, Pedro L. [3] ; Balakrishnan, Narayanaswamy [4] ; Louzada, Francisco [3]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Fed Mato Grosso, Dept Stat, Cuiaba, MG - Brazil
[2] Univ Fed Sao Carlos, Dept Stat, Sao Carlos - Brazil
[3] Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos - Brazil
[4] McMaster Univ, Dept Math & Stat, Hamilton, ON - Canada
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Citações Web of Science: 0

Burn-in tests have been discussed extensively in the reliability literature, wherein we operate items until high degradation values are observed, which could separate the weak units from the normal ones before they get to the market. This concept is often referred to as a screening procedure, and it involves misclassification errors. Commonly, the underlying degradation process is assumed to be a Wiener or a gamma process, based on which several optimal burn-in policies have been developed in the literature. In this article, we consider the mixture inverse Gaussian process, which possesses monotone degradation paths and some interesting properties. Under this process, we present a decision rule for classifying a unit under test as normal or weak based on burn-in time and a set of cutoff points. Then, an economic cost model is used to find the optimal burn-in time and the optimal cutoff points, when the estimation of model parameters is based on an analytical method or an approximate method involving copula theory. Finally, an example of a real dataset on light amplification by stimulated emission of radiations, well known in the reliability literature, is used to illustrate the model and the inferential approach proposed here. (AU)

Processo FAPESP: 17/25971-0 - Inferência estatística de sistemas complexos
Beneficiário:Pedro Luiz Ramos
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs