Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Improving Thermodynamic Stability of nano-LiMn2O4 for Li-Ion Battery Cathode

Texto completo
Autor(es):
Nakajima, Kimiko [1] ; Souza, Flavio L. [2, 3] ; Freitas, Andre L. M. [3] ; Thron, Andrew [1] ; Castro, Ricardo H. R. [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 - USA
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Nanotechnol Natl Lab LNNano, BR-13083100 Campinas, SP - Brazil
[3] Univ Fed ABC, Lab Alternat Energy & Nanomat LEAN, BR-09250790 Santo Andre, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: CHEMISTRY OF MATERIALS; v. 33, n. 11, p. 3915-3925, JUN 8 2021.
Citações Web of Science: 1
Resumo

Nanomaterials can exhibit improved electrochemical performance in cathode applications, but their inherently high surface areas cause unconventional instability, leading to capacity fading after a limited number of battery cycles. This is because of their high surface reactivity, which makes them more susceptible to phenomena such as grain growth, sintering, solubilization, and phase transformations. Thermodynamically, these can be attributed to an increased contribution of interfacial enthalpies to the total free energy of the system. The lack of experimental data on the interfacial thermodynamics of lithium-based materials has hindered strategies to mitigate such degradation mechanisms. In this study, interfacial energies of LiMn2O4 nanoparticles were directly measured for the first time using calorimetry, and the possibility of thermodynamically manipulating both surface and grain boundary energies using a dopant (scandium) was explored. We show that undoped LiMn2O4 nanoparticles have a surface energy of 0.85 J/m(2), which is significantly lower than that of LiCoO2. Moreover, introducing scandium further lowered the LiMn2O4 surface energy, leading to a demonstrated improved stability against coarsening and reactivity to water, which can potentially result in more stable cathode materials for battery applications. (AU)

Processo FAPESP: 17/11986-5 - Geração e Armazenamento de Novas Energias: trazendo desenvolvimento tecnológico para o país
Beneficiário:Ana Flávia Nogueira
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia