Mirante: A visualization tool for analyzing urban ... - BV FAPESP
Busca avançada
Ano de início
Entree


Mirante: A visualization tool for analyzing urban crimes

Texto completo
Autor(es):
Garcia-Zanabria, Germain ; Gomez-Nieto, Erick ; Silveira, Jaqueline ; Poco, Jorge ; Nery, Marcelo ; Adorno, Sergio ; Nonato, Luis G. ; IEEE
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: 2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020); v. N/A, p. 8-pg., 2020-01-01.
Resumo

Visualization assisted crime analysis tools used by public security agencies are usually designed to explore large urban areas, relying on grid-based heatmaps to reveal spatial crime distribution in whole districts, regions, and neighborhoods. Therefore, those tools can hardly identify micro-scale patterns closely related to crime opportunity, whose understanding is fundamental to the planning of preventive actions. Enabling a combined analysis of spatial patterns and their evolution over time is another challenge faced by most crime analysis tools. In this paper, we present Mirante, a crime mapping visualization system that allows spatiotemporal analysis of crime patterns in a street-level scale. In contrast to conventional tools, Mirante builds upon street-level heatmaps and other visualization resources that enable spatial and temporal pattern analysis, uncovering fine-scale crime hotspots, seasonality, and dynamics over time. Mirante has been developed in close collaboration with domain experts, following rigid requirements as scalability and versatile to be implemented in large and medium-sized cities. We demonstrate the usefulness of Mirante throughout case studies run by domain experts using real data sets from cities with different characteristics. With the help of Mirante, the experts were capable of diagnosing how crime evolves in specific regions of the cities while still being able to raise hypotheses about why certain types of crime show up. (AU)

Processo FAPESP: 17/05416-1 - Analise visual de métodos de aprendizado de máquina: um ensaio prático a partir de dados de crime da cidade de São Paulo.
Beneficiário:Germain García Zanabria
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 19/04434-1 - Análise dos Padrões Criminais na Cidade de São Paulo
Beneficiário:Germain García Zanabria
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 19/10560-0 - Análise visual e engenharia de atributos urbanos para previsão de crimes na cidade de São Paulo
Beneficiário:Erick Mauricio Gómez Nieto
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado